Control of Wastewater Treatment Removing Phosphate Based on ASM No. 2 Simplified Model and Investigation of Luxury Uptake Limitation

ASM No. 2 간략화 모델에 기초한 인산염의 제어 및 인섭취 제한현상에 대한 고찰

  • Kim, Shin-Geol (Department of Environmental Engineering, University of Seoul) ;
  • Choi, In-Su (Department of Environmental Engineering, University of Seoul) ;
  • Koo, Ja-Yong (Department of Environmental Engineering, University of Seoul)
  • 김신걸 (서울시립대학교 환경공학부) ;
  • 최인수 (서울시립대학교 환경공학부) ;
  • 구자용 (서울시립대학교 환경공학부)
  • Published : 2008.02.29

Abstract

Phosphate is the limiting factor leading to the eutrophication in nature and has been usually removed by the luxury uptake of PAOs(Phosphate accumulating organisms). The purpose of this study was the control of wastewater treatment removing phosphorus. The control of wastewater treatment process was performed by optimal and adaptive control. They were performed as followings. Firstly the inflow phosphate concentration was measured and the optimal aeration time was calculated by simplified ASM No. 2 for the phosphate to be 1.0 mg/L in effluent. It was optimal control. But when the phosphate concentration in effluent was not 1.0 mg/L, adaptive control was necessary to coincide the objective of control with real value. Then it was performed as the objective phosphate concentration in effluent was changed according to calculation of errors and it was adaptive control. The wastewater treatment process had been controlled by them for about one month. The range of phosphate concentration in effluent 0.2$\sim$3.2 mg/L and the average of it was 1.0 mg/L. The limitation of luxury uptake occurred two times while wastewater treatment process was running. After the analysis of laboratory tests, we knew the reasons were the shortage of ammonia nitrogen and the excessive aeration.

인은 자연계에서 부영양화 현상을 일으키는 주요한 인자로서 하수중의 인은 주로 인축적 미생물의 과잉섭취에 의해 제거된다. 이 연구의 목적은 인을 처리하는 하수처리공정을 제어하는 것이다. 이를 위해서 본 연구에서는 두가지의 제어방법을 응용하였으며 이 방법은 최적제어(Optimal control)와 적응제어(Adaptive control)이다. 우선 최적제어는 유입수중의 인농도를 측정한 이후에 간략화된 ASM No. 2 모델을 이용하여 유출수중의 인농도가 1.0 mg/L가 되는 포기시간을 산정하고 이 산정된 포기시간에 따라 반응조를 제어함으로써 이루어진다. 그런데 실제 반응조를 최적제어로 한 경우에도 실제 유출수중의 인농도는 1.0 mg/L가 되지 않는 경우가 발생한다. 이 때에는 적응제어로서 목표로 한 1.0 mg/L를 벗어난 만큼 목표농도를 변화시켜 주며 제어를 실시하였다. 약 한달간의 제어결과 유출수중의 인농도는 0.2$\sim$3.2 mg/L이었으며 평균은 1.0 mg/L로서 만족스러웠다. 연구수행중 하수처리공정에서 두 번에 걸쳐 인섭취가 제한되는 현상이 발생하였다. 이에 대한 원인을 규명한 결과 원인은 암모니아의 부족과 과다한 포기가 원인인 것으로 나타났다.

Keywords

References

  1. Lee, T. T., Wang, F. Y., and Newell, R. B., "On the modelling and simulation of a BNR activated sludge process based on distributed parameter approach," Water Sci. Technol., 39(6), 79-88(1999)
  2. Sin, G., Villez, K., and Vanrolleghem, P. A., "Application of a model-based optimization methodology for nutrient removing SBRs leads to falsification of the model," Water Sci. Technol., 53(4-5), 95-103(2006)
  3. Cinar, O., Daigger, G. T., and Graef, S. P., "Evaluation of IAWQ Activated sludge model No. 2 using steadystate data from four full-scale wastewater treatment plants," Water Environ. Res., 70(6), 1216-1224(1998) https://doi.org/10.2175/106143098X123552
  4. Brdjanovic, D., Van Loosdrecht, M. C. M., Versteeg, P., Hooijmans, C. M., Alaerts, G. J., and Heijnen, J. J., "Modelling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder," Water Res., 34(3), 846-858(2000) https://doi.org/10.1016/S0043-1354(99)00219-5
  5. Kim, H., Hao, O. J., and McAvoy, T. J., "SBR system for phosphorus removal: Linear model based optimization," J. Environ. Eng., 127(2), 105-111(2001) https://doi.org/10.1061/(ASCE)0733-9372(2001)127:2(105)
  6. 김신걸, 최인수, 구자용, 혐기-호기-무산소 SBR 반응조를 이용한 ASM No. 2 모델의 간략화에 관한 연구, 상하수도학회지, 22(1), 3-14(2007)
  7. Carucci, A., Kühni, M., Brun, R., Carucci, G., Koch, G., Majone, M., and Siegrist, H., "Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed," Water Sci. Technol., 39(1), 75-85(1999)
  8. Lee, D. S., Jeon, C. O., and Park, J. M., "Biological nitrogen removal with enhanced phosphate uptake a sequencing batch reactor using single sludge system," Water Sci. Technol., 35(16), 3968-3976(2001)
  9. Brdjanovic, D.., Slamet, A., Van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J., and Heijenen, J. J., "Impact of excessive aeration on biological phosphorus removal from wastewater," Water Res., 32(1), 200-208 (1998) https://doi.org/10.1016/S0043-1354(97)00183-8
  10. Peng, D. C., Bernet, N., Delgenes, J. P., and Moletta, R., "Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration," J. Technol. Biotechnol., 76, 553-558(2001) https://doi.org/10.1002/jctb.419
  11. Choi, I. S., Aerobic degradation of surfactant and nitrification in a membrane bioreactor(MBR) with $CO_2$ and $O_2$ gas analysis, VDI-Verlag, ISBN 3-18-383803-6(2005)
  12. Kim, H., Hao, O. J., and McAvoy, T. J., "SBR system for phosphorus removal: ASM 2 and Simplified linear model," J. Environ. Eng., 127(2), 98-104(2001) https://doi.org/10.1061/(ASCE)0733-9372(2001)127:2(98)
  13. Hong, S. W., Choi, Y. S., Kim, S. J., and Kwon, G., "Pilot-testing an alternative on-site wastewater treatment system for small communities and its automatic control," Water Sci. Technol., 51(10), 101-108(2005)
  14. Ingildsen, P., Rosen, C., Gernaey, K. V., Nielsen, M. K., Guildal, T., and Jacobsen, B. N., "Modelling and control strategy testing of biological and chemical phosphorus removal at Avedǿre WWTP," Water Sci. Technol., 53(4-5), 105-115(2006) https://doi.org/10.2166/wst.2006.115