• 제목/요약/키워드: $L^p$ space

검색결과 433건 처리시간 0.024초

ANALYTIC FOURIER-FEYNMAN TRANSFORMS ON ABSTRACT WIENER SPACE

  • Ahn, Jae Moon;Lee, Kang Lae
    • Korean Journal of Mathematics
    • /
    • 제6권1호
    • /
    • pp.47-66
    • /
    • 1998
  • In this paper, we introduce an $L_p$ analytic Fourier-Feynman transformation, show the existence of the $L_p$ analytic Fourier-Feynman transforms for a certain class of cylinder functionals on an abstract Wiener space, and investigate its interesting properties. Moreover, we define a convolution product for two functionals on the abstract Wiener space and establish the relationships between the Fourier-Feynman transform for the convolution product of two cylinder functionals and the Fourier-Feynman transform for each functional.

  • PDF

A NEW FUNCTION SPACE Lα(X) VERSION 1.1

  • Pak, Hee Chul;Chang, Sang-Hoon
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.471-481
    • /
    • 2008
  • We develop a new function space $L_{\alpha}(X)$ that generalizes the classical Lebesgue space $L^p(X)$. The generalization is focused on a better explanation of the flux terms arising from many dynamics.

  • PDF

벨트를 이용한 도수견인이 허리뼈 척추사이원반 탈출증 환자의 허리뼈 척추사이 공간에 미치는 효과 (The Effects of Manual Traction Using Belt on Lumbar Intervertebral Space of Lumbar HIVD)

  • 정성관;이호준;이승병
    • 대한정형도수물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.1-7
    • /
    • 2022
  • Background: Manual traction with a belt is a physiotherapy treatment method that reduces disk pressure and widens the disk space. In clinical settings, it is applied to numerous patients with herniated intervertebral disk (HIVD). This study aimed to identify the effects of manual traction with a belt on the intervertebral space in patients with lumbar HIVDs. Methods: The intervention was performed on 17 patients with lumbar HIVDs who were divided into two groups: one with eight patients having HIVD at L4~L5 and another group with nine patients having HIVD at L5~S1. The participants received manual traction with a belt twice a week for 12 weeks, and radiographic imaging was used to visualize the intervertebral space and compare it before and after treatment. Results: Manual traction with a belt increased the lumbar intervertebral space at L4~L5 and L5~S1 in patients with L4~L5 HIVD. A significant difference was observed in the L4-L5 distance (p<.01); however, no significant difference was observed in the L5~S1 distance (p>.05). The intervertebral space significantly increased at both L4~L5 and L5~S1 in patients with L5~S1 HIVD (p<.05). Conclusion: Thus, manual traction with a belt increased the intervertebral space in patients with L4~L5 and L5~S1 HIVDs. These results are expected to guide studies on manual traction with belts in clinical settings in the future. Further studies using the present research as an objective study method are anticipated.

Some Notes on Lp-metric Space of Fuzzy Sets

  • Kim, Yun-Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.242-246
    • /
    • 2010
  • It is well-known that the space $E^n$ of fuzzy numbers(i.e., normal, upper-semicontinuous, compact-supported and convex fuzzy subsets)in the n-dimensional Euclidean space $R^n$ is separable but not complete with respect to the $L_p$-metric. In this paper, we introduce the space $F_p(R^n)$ that is separable and complete with respect to the $L_p$-metric. This will be accomplished by assuming p-th mean bounded condition instead of compact-supported condition and by removing convex condition.

RELATION BETWEEN THE SPACE $M_{\Psi}$ AND WEAK $L_P$

  • Lee, Chong-Sung
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.915-920
    • /
    • 1999
  • We showed the upper p-estimate and p-power concavity are the necessary and sufficient condition of the space $M_{\Psi}$to be weak $L_pX>.

HARMONIC OPERATORS IN $L^p(V N(G))$

  • Lee, Hun Hee
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.319-329
    • /
    • 2012
  • For a norm 1 function ${\sigma}$ in the Fourier-Stieltjes algebra of a locally compact group we define the space of ${\sigma}$-harmonic operators in the non-commutative $L^p$-space associated to the group von Neumann algebra of G. We will investigate some properties of the space and will obtain a precise description of it.

Lp-boundedness (1 ≤ p ≤ ∞) for Bergman Projection on a Class of Convex Domains of Infinite Type in ℂ2

  • Ly Kim Ha
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.413-424
    • /
    • 2023
  • The main purpose of this paper is to show that over a large class of bounded domains Ω ⊂ ℂ2, for 1 < p < ∞, the Bergman projection 𝓟 is bounded from Lp(Ω, dV ) to the Bergman space Ap(Ω); from L(Ω) to the holomorphic Bloch space BlHol(Ω); and from L1(Ω, P(z, z)dV) to the holomorphic Besov space Besov(Ω), where P(ζ, z) is the Bergman kernel for Ω.

BEST APPROXIMATIONS IN $L_{p}$(S,X)

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.589-597
    • /
    • 1999
  • Let G be a closed subspace of a Banach space X and let (S,$\Omega$,$\mu$) be a $\sigma$-finite measure space. It was known that $L_1$(S,G) is proximinal in $L_1$(S,X) if and only if $L_p$(S,G) is proximinal in $L_p$(S,X) for 1$\infty$. In this article we show that this result remains true when "proximinal" is replaced by "Chebyshev". In addition, it is shown that if G is a proximinal subspace of X such that either G or the kernel of the metric projection $P_G$ is separable then, for 0 < p $\leq$ $\infty$. $L_p$(S,G) is proximinal in $L_p$(S,X)

  • PDF

A UNIFORM ESTIMATE ON CONVOLUTION OPERATORS WITH THE ARCLENGTH MEASURE ON NONDEGENERATE SPACE CURVES

  • Choi, Youngwoo
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.291-298
    • /
    • 1998
  • The $L^p-L^q$ mapping properties of convolution operators with measures supported on curves in $\mathbb{R}^3$ have been studied by many authors. Oberlin provided examples of nondegenerate compact space curves whose arclength measures enjoy $L^p$-improving properties. This was later extended by Pan who showed that such properties hold for all nondegenerate compact space curves. In this paper, we will prove that the operator norm of the convolution operator with the arclength measure supported on a nondegenerate compact space curve depends only on certain quantities of the underlying curve.

  • PDF

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.