KYUNGPOOK Math. J. 63(2023), 413-424
https://doi.org/10.5666/KMJ.2023.63.3.413
pISSN 1225-6951 eISSN 0454-8124
(C) Kyungpook Mathematical Journal

L^{p}-boundedness $(1 \leq p \leq \infty)$ for Bergman Projection on a Class of Convex Domains of Infinite Type in \mathbb{C}^{2}

Ly Kim Ha
University of Science, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Faculty of Mathematics and Computer Science, University of Science, Vietnam National University Ho Chi Minh City, Vietnam
e-mail: lkha@hcmus.edu.vn

Abstract. The main purpose of this paper is to show that over a large class of bounded domains $\Omega \subset \mathbb{C}^{2}$, for $1<p<\infty$, the Bergman projection \mathcal{P} is bounded from $L^{p}(\Omega, d V)$ to the Bergman space $A^{p}(\Omega)$; from $L^{\infty}(\Omega)$ to the holomorphic Bloch space $\operatorname{BlHol}(\Omega)$; and from $L^{1}(\Omega, P(z, z) d V)$ to the holomorphic Besov space $\operatorname{Besov}(\Omega)$, where $P(\zeta, z)$ is the Bergman kernel for Ω.

1. Introduction

Let Ω be a bounded domain in \mathbb{C}^{2} with smooth boundary $b \Omega$. Let ρ be a defining function for Ω so that $\Omega=\left\{z \in \mathbb{C}^{2}: \rho(z)<0\right\}$ and $b \Omega=\left\{z \in \mathbb{C}^{2}: \rho(z)=0\right\}$, $\nabla \rho \neq 0$ on $b \Omega$. Let $\mathcal{O}(\Omega)$ be the space of functions that are holomorphic in Ω, with the topology of uniform convergence on compact subsets of Ω. For $1<p<\infty$, let $L^{p}(\Omega, d V)$ be the standard Lebesgue space over Ω with respect to the Lebesgue volume measure $d V$ of \mathbb{R}^{4}, and let the Bergman space $A^{p}(\Omega)=L^{p}(\Omega, d V) \cap \mathcal{O}(\Omega)$. The Bergman projection \mathcal{P} is the orthogonal projection of $L^{2}(\Omega)$ onto the Bergman space $A^{2}(\Omega)$. The most important property of the Bergman projection is that there exists a function $P: \Omega \times \Omega \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\mathcal{P}[u](z)=\int_{\Omega} u(\zeta) P(\zeta, z) d V(\zeta) \tag{1.1}
\end{equation*}
$$

for all $u \in L^{2}(\Omega), z \in \Omega$. Here, $P(\zeta, z)$ is the Bergman kernel on Ω, which is holomorphic with respect to $z \in \Omega$, and anti-holomorphic in ζ. In this paper, we

Received December 14, 2020; revised June 11, 2021; accepted June 14, 2021.
2020 Mathematics Subject Classification: 32H10, 32F18, 46E20, 46E99.
Key words and phrases: Bergman projection, Bloch functions, Besov functions, finite/infinite type.
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number T2022-18-01.
investigate the $L^{p}(\Omega)$-boundedness of the projection \mathcal{P}. In the recent forty years, there have been many papers focused on studying $L^{p}(\Omega)$-boundedness (see for example $[16,1,14,15,2]$) and its applications in studying commutator operators (see for example [10]), composition operators (see for example [4, 9]). Although there are many results on the $L^{p}(\Omega)$-boundedness, the case $p=1$ and the case $p=\infty$ are still open. In this paper, we provide an answer to solve these problems.

Definition 1.1. ([13, p. 478]) A differentiable function u on Ω is said to be a Bloch function if and only if

$$
\|u\|_{\mathrm{Bl}(\Omega)}=\sup _{z \in \Omega}(|\rho(z)\|u(z)|+|\rho(z) \| \nabla u(z)|)<\infty .
$$

The space of all Bloch functions defined on Ω is denoted by $\operatorname{Bl}(\Omega)$ and by $\operatorname{BlHol}(\Omega)=\operatorname{Bl}(\Omega) \cap \mathcal{O}(\Omega)$ the space of holomorphic Bloch functions on Ω. We also define $\|u\|_{\mathrm{BlHol}(\Omega)}=\|u\|_{\mathrm{Bl}(\Omega)}$ for all $u \in \operatorname{BlHol}(\Omega)$.

Since $P(z, z)>0$ for all $z \in \Omega, P(z, z) d V(z)$ is a biholomorphically invariant measure of Ω.

Definition 1.2. A function $u \in A^{2}(\Omega, d V)$ is said to be a Besov function if and only if

$$
\|u\|_{\operatorname{Besov}(\Omega)}=\left(\int_{\Omega}\left|\nabla^{3} u(z)\right|(-\rho(z))^{3} P(z, z) d V(z)\right)<\infty
$$

where $\left|\nabla^{3} u(z)\right|=\sum_{1 \leq j+k \leq 3}\left|\frac{\partial^{j+k} u}{\partial z_{1}^{j} \partial z_{2}^{k}}(z)\right|$. The space of all holomorphic Besov functions defined on Ω is denoted by $\operatorname{Besov}(\Omega)$. Here we have an explanation for this definition. Assume that Ω is a smoothly bounded, strongly pseudoconvex domains. The classical Besov space $\mathcal{B}(\Omega)$ is a subspace of $A^{2}(\Omega, d V)$ in which we equip the semi-norm

$$
\|u\|_{B}=\int_{\Omega}|\nabla u(z)|(-\rho(z)) P(z, z) d V(z)<\infty .
$$

Since $\int_{\Omega}(-\rho(z))^{-1} d V(z)=\infty,\left(\mathcal{B}(\Omega),\|\cdot\|_{B}\right)$ consists only constant functions on Ω. In order to make more natural, we use the semi-norm $\|\cdot\|_{\operatorname{Besov}(\Omega)}$ instead of $\|\cdot\|_{B}$. This idea was used in [13] for strongly pseudoconvex domains.

The main result in this paper is following.
Main Theorem. Let Ω be a smoothly bounded convex domain in \mathbb{C}^{2} admitting a type F at all boundary points (see Definition 2.2) and satisfying the condition (B) (see Definition 2.4). Then the Bergman projection is bounded from:

1. $L^{p}(\Omega, d V)$ to $A^{p}(\Omega, d V)$ for all $1<p<\infty$.
2. $L^{\infty}(\Omega)$ to $\operatorname{BlHol}(\Omega)$.
3. $L^{1}(\Omega, P(z, z))$ to $\operatorname{Besov}(\Omega)$.

Phong and Stein in [16] established the $L^{p} \rightarrow A^{p}$ boundedness when Ω is a strongly pseudoconvex domain. Then, this result was generalized to a certain class of convex domains in \mathbb{C}^{2} (see [1]) and to finite type convex domains in \mathbb{C}^{n} (see [15]). Even when Ω is the unit ball in \mathbb{C}^{n}, for $n \geq 2$, the Bergman projection \mathcal{P} can not be extended continuously from $L^{p}(\Omega)$ onto $A^{p}(\Omega)$ when $p=1$ or $p=$ ∞ (for example, see [20, Section 7.1]). In [14], using Cauchy-Fantappiè integral theory, Ligocka obtained the $L^{\infty}(\Omega) \rightarrow \operatorname{BlHol}(\Omega)$ boundedness on bounded strongly pseudoconvex domains. Recently, in studying Besov spaces on general domains in $\mathbb{C}^{n}, \mathrm{Li}$ and Luo (see [13]) have proved the $L^{1}(\Omega, P(z, z)) \rightarrow \operatorname{Besov}(\Omega)$ boundedness also on bounded strongly pseudoconvex domains or convex domains of finite type in \mathbb{C}^{2}.

The structure of the paper is as follows. Section 2 deals with preliminaries for the Bergman projection in terms of Cauchy-Fantappiè forms on convex domains admitting the F-type condition. Section 3 deals with the proof of the Main Theorem.

2. Preliminaries

Let $\Omega \subset \mathbb{C}^{2}$ be a bounded convex domain with smooth boundary $b \Omega$ with a defining function ρ. By the hypothesis that Ω is convex,

$$
\sum_{i, j=1}^{4} \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(x) a_{i} a_{j} \geq 0
$$

in which $x \in b \Omega, z_{j}=x_{2 j-1}+\sqrt{-1} x_{2 j}$ and $a \in \mathbb{R}^{4}$ be a non-zero vector such that $\sum_{j=1}^{4} a_{j} \frac{\partial \rho}{\partial x_{j}}(x)=0$ on $b \Omega$. Let us define, for $(\zeta, z) \in b \Omega \times \Omega$:

$$
\begin{equation*}
\Phi(\zeta, z)=\sum_{j=1}^{2} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta)\left(\zeta_{j}-z_{j}\right) \tag{2.1}
\end{equation*}
$$

The convexity of Ω gives

$$
\operatorname{Re}\left(\sum_{j=1}^{2} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta)\left(\zeta_{j}-z_{j}\right)\right) \neq 0
$$

so that $\Phi(\zeta, z) \neq 0$ for all $\zeta \in b \Omega, z \in \Omega$. Moreover, the following lemma proved in [17] is a consequence of the definition of $\Phi(\zeta, z)$.

Lemma 2.1. For any $P \in b \Omega$, there are positive constants δ, c such that for all boundary points $\zeta \in b \Omega \cap B(P, \delta)$, we have

1. $\Phi(\zeta, z)$ is holomorphic in $z \in B(\zeta, \delta)$;
2. $\Phi(\zeta, \zeta)=0$, and $\left.d_{z} \Phi\right|_{z=\zeta} \neq 0$;
3. There exists a constant $A>0$ such that $|\Phi(\zeta, z)| \geq A$ for all $z \in \Omega$ and $|z-\zeta| \geq c ;$
4. $\rho(z)>0$ for all z with $\Phi(\zeta, z)=0$ and $0<|z-\zeta|<c$.

Now we set

$$
C(\zeta, z)=\frac{1}{2 \pi i}\left[\sum_{j=1}^{2} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta) d \zeta_{j}\right] \frac{1}{\Phi(\zeta, z)} \quad \text { for }(\zeta, z) \in b \Omega \times \Omega
$$

which is a $(1,0)$-form of ζ-variables. The Cauchy-Leray kernel for the convex domain Ω is

$$
\begin{align*}
\Omega_{0}(C(\zeta, z)) & =C(\zeta, z) \wedge\left(\bar{\partial}_{\zeta} C(\zeta, z)\right) \tag{2.2}\\
& =\sum_{j_{0} \in\{1,2\}} \frac{A_{j_{0}}(\zeta)}{\Phi^{2}(\zeta, z)} d \zeta_{1} \wedge d \zeta_{2} \wedge d \bar{\zeta}_{j_{0}} \tag{2.3}
\end{align*}
$$

which is a Cauchy-Fantappiè $(2,1)$-form on $b \Omega \times \Omega$, where $A_{j_{0}}(\zeta)$ is a polynomial involving first and second derivatives in ζ of ρ.

For each $z \in \Omega$ we extend $C(., z)$ smoothly to the interior of Ω as follows

$$
\widetilde{C}(\zeta, z)=\frac{1}{2 \pi i}\left[\sum_{j=1}^{2} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta) d \zeta_{j}\right] \frac{1}{\Phi(\zeta, z)-\rho(\zeta)}
$$

Definition 2.2. Let $F:[0, \infty) \rightarrow[0, \infty)$ be a smooth, strictly increasing function such that

1. $F(0)=0$,
2. $\int_{0}^{\sigma}\left|\ln F\left(r^{2}\right)\right| d r<\infty$ for some $\sigma>0$ which is small enough,
3. $\frac{F(t)}{t}$ is non-decreasing function.

Let $\Omega \subset \mathbb{C}^{2}$ be a smooth bounded, convex domain. We say that Ω admitting F type at a point $P \in b \Omega$ if there are positive constants c, c^{\prime} satisfy that for all $\zeta \in b \Omega \cap B\left(P, c^{\prime}\right):$

$$
\rho(z) \gtrsim F\left(|z-\zeta|^{2}\right),
$$

for all $z \in B(\zeta, c)$ with $\Phi(\zeta, z)=0$.

If Ω admits the same F-type at every point on $b \Omega$, we simply call that Ω admitting F-type. In case $F(t)=t^{m}$, for $m=1,2, \ldots$, the F-type notion agrees with the finite type condition in the sense of Range in [17, 18]. Here the notation $B(\zeta, r)$ means the Euclidean ball centered at ζ of radius $r>0$. Also the notations \lesssim and \gtrsim denote inequalities up to a positive constant, and \approx means the combination of \lesssim and \gtrsim.

Some examples to illustrate that the F-type condition consists a large class of convex domains of finite and infinite type in \mathbb{C}^{2} can be found in $[8,9]$.

The following lemma provides the important lower estimate for the CauchyFantappiè form. Its proof is rather similar to the proof of [5, Lemma 3.3] with a negligible modification and can be found in [7, before Corollary 2.6].

Lemma 2.3. Let Ω be a smoothly bounded, convex domain in \mathbb{C}^{2} admitting an F type at $P \in b \Omega$. Then there is a positive constant c such that the support function $\Phi(\zeta, z)$ satisfies the following estimate

$$
\begin{equation*}
|\Phi(\zeta, z)-\rho(\zeta)| \gtrsim|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im} \Phi(\zeta, z)|+F\left(|z-\zeta|^{2}\right), \tag{2.4}
\end{equation*}
$$

for every $\zeta \in \bar{\Omega} \cap B(P, c)$, and $z \in \Omega,|z-\zeta|<c$.
Definition 2.4. ([13, Definition 2.1]) We say that a smoothly bounded domain $\Omega \subset \mathbb{C}^{2}$ has B-property if there is a positive constant C_{Ω} such that the following holds:

$$
(-\rho(\zeta))^{3} \int_{\Omega}\left|\nabla_{z}^{3} P(\zeta, z)\right| d V(z)+\frac{1}{P(\zeta, \zeta)} \int_{\Omega}\left|\nabla_{z}^{3} P(\zeta, z)\right|(-\rho(z))^{3} P(z, z) d V(z) \leq C_{\Omega}
$$

for all $\zeta \in \Omega$.
In \mathbb{C}^{2}, there are many bounded domains which admitting a type F at all boundary points and satisfying the condition (B). Firstly, all strictly convex domains in \mathbb{C}^{2} admits type $F(t)=t$ at all boundary points. Secondly, let m_{1}, m_{2} be positive integers, and let

$$
\Omega_{m}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2 m_{1}}+\left|z_{2}\right|^{2 m_{2}}-1<0\right\}
$$

be convex domain in \mathbb{C}^{2}. The family $\left\{\Omega_{m}\right\}$ is the certain class of weakly convex domains in \mathbb{C}^{2}. Then, in [5], the author shows that Ω_{m} admits type $F(t)=t^{m}$ at all boundary points. In [13, p. 480-p. 481], it is proved that any strictly convex domain or any Ω_{m} satisfies B-property.

For $u \in C^{1}(\bar{\Omega}) \cap \mathcal{O}(\Omega)$ and u is holomorphic on Ω, by the Stoke Theorem, we get

$$
\begin{equation*}
u(z)=\int_{\Omega} u(\zeta) \bar{\partial}_{\zeta} \Omega_{0}(\widetilde{C}(\zeta, z)), \quad z \in \Omega \tag{2.5}
\end{equation*}
$$

By the smoothness of each component in $\Omega_{0}\left((\widetilde{C}(\zeta, z))\right.$ then the form $\bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z))$ also is a smooth form on $(\bar{\Omega} \times \bar{\Omega}) \backslash\{(z, z), z \in b \Omega\}$.

For $0<c<\delta$ (c is the constant in Lemma 2.3), let us define $\Omega_{\delta}=\left\{z \in \mathbb{C}^{2}\right.$: $\rho(z)<\delta\}$ and let P_{z} be the Hörmander solution operator to the $\bar{\partial}$-equation in the variables $z \in \Omega_{\delta}$ (the existence of P_{z} can be found in [11]).

Definition 2.5. For $(\zeta, z) \in \bar{\Omega} \times \bar{\Omega}_{\delta}$, let us define

$$
\begin{aligned}
& Q(\zeta, z)=-P_{z}\left(\bar{\partial}_{z} \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. \\
& G(\zeta, z)=Q(\zeta, z)+\bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z))
\end{aligned}
$$

where $G(\zeta, z)$ is holomorphic in z.
The fact $Q(\zeta, z) \in C^{\infty}(\bar{\Omega}) \times C^{1}(\bar{\Omega})$ implies that

$$
\begin{aligned}
& G(\zeta, z)=\frac{1}{\pi^{2}} \frac{1}{\left(\Phi(\zeta, z)-\rho(\zeta)^{3}\right.}\left[\mathrm{O}(|\zeta-z|)+\operatorname{det}\left(\begin{array}{ccc}
\rho(\zeta) & \frac{\partial \rho}{\partial \zeta_{1}}(\zeta) & \frac{\partial \rho}{\partial \zeta_{2}}(\zeta) \\
\frac{\partial \rho}{\partial \bar{\zeta}_{1}}(\zeta) & \frac{\partial^{2} \rho}{\partial \zeta_{1} \partial \bar{\zeta}_{1}}(\zeta) & \frac{\partial^{2} \rho}{\partial \zeta_{2} \partial \bar{\zeta}_{1}}(\zeta) \\
\frac{\partial \rho}{\partial \bar{\zeta}_{2}}(\zeta) & \frac{\partial^{2} \rho}{\partial \zeta_{1} \partial \bar{\zeta}_{2}}(\zeta) & \frac{\partial^{2} \rho}{\partial \zeta_{2} \partial \bar{\zeta}_{2}}(\zeta)
\end{array}\right)\right] \\
& \quad d \zeta_{1} \wedge d \bar{\zeta}_{1} \wedge d \zeta_{2} \wedge d \bar{\zeta}_{2}+\text { non-singular terms. }
\end{aligned}
$$

Let u be a holomorphic function defined on Ω_{δ}, since

$$
\begin{aligned}
\int_{\Omega} u(\zeta) P_{z}\left(\bar{\partial}_{z} \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. & =\int_{\Omega} P_{z}\left(u(\zeta) \bar{\partial}_{z} \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. \\
& =P_{z}\left(\int_{\Omega} u(\zeta) \bar{\partial}_{z} \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. \\
& =P_{z}\left(\int_{\Omega} u(\zeta) \bar{\partial}_{\zeta} \bar{\partial}_{z} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. \\
& =P_{z}\left(\int_{b \Omega} u(\zeta) \bar{\partial}_{z} \Omega_{0}((\widetilde{C}(\zeta, z)))\right. \\
& =0 \quad(\operatorname{see}[12,1.4 .2])
\end{aligned}
$$

we have the reproductive property of $G(\zeta, z)$ that $u(z)=\int_{\Omega} u(\zeta) G(\zeta, z)$ for all $z \in \Omega$. More generally, let $u \in L^{2}(\Omega)$, and let us define

$$
\mathcal{G}[u](z)=\int_{\Omega} u(\zeta) G(\zeta, z)
$$

and its dual

$$
\mathcal{G}^{*}[u](z)=\int_{\Omega} u(\zeta) \overline{G(\zeta, z)}
$$

Then $\mathcal{G}: L^{2}(\Omega) \rightarrow A^{2}(\Omega)$ is a well-defined, continuous operator. Moreover, we also have:

Theorem 2.6. ([6, Theorem 3.4][Ligocka's decomposition]) Let $\Omega \subset \mathbb{C}^{2}$ be a smoothly bounded, convex domain. Assume that Ω admits a F-type at all boundary points for some function F. Then $\mathcal{P}[u](z)=\mathcal{G}(I-\mathcal{B})^{-1}[u](z)=(I+\mathcal{B})^{-1} \mathcal{G}^{*}[u](z)$, where

$$
\mathcal{B}[u](z)=\mathcal{G}^{*}[u](z)-\mathcal{G}[u](z)
$$

3. Proof of the Main Theorem

3.1. Proof of the assertion (1)

This fact has been proved in [9]. For convenience, we briefly sketch its proof here. The $L^{p}(\Omega, d V)$-boundedness (for $p \in(1, \infty)$) is a consequence of the following lemma.

Lemma 3.1. The operators \mathcal{G} and \mathcal{G}^{*} are bounded on $L^{p}(\Omega, d V)$. In particular, we have

$$
\|\mathcal{G}[u]\|_{L^{p}(\Omega, d V)} \lesssim\|u\|_{L^{p}(\Omega, d V)} \quad \text { for all } u \in L^{p}(\Omega, d V), 1 \leq p \leq \infty,
$$

and

$$
\left\|\mathcal{G}^{*}[u]\right\|_{L^{p}(\Omega, d V)} \lesssim\|u\|_{L^{p}(\Omega, d V)} \quad \text { for all } u \in L^{p}(\Omega, d V), 1<p<\infty
$$

Due to the strong duality and the Marcinkiewicz Interpolation Theorem from harmonic analysis (see Theorem B.7, Appendix B in [3] for more details), it is sufficient to show that

$$
\|\mathcal{G}[u]\|_{L^{1}(\Omega, d V)} \lesssim\|u\|_{L^{1}(\Omega, d V)} \quad \text { and } \quad\|\mathcal{G}[u]\|_{L^{\infty}(\Omega, d V)} \lesssim\|u\|_{L^{\infty}(\Omega, d V)}
$$

Firstly, we recall the change of variables $(\alpha, w)=\left(\alpha_{1}, \alpha_{2}, w_{1}, w_{2}\right)=\left(\zeta_{1}, \zeta_{2}, z_{1}-\right.$ $\left.\zeta_{1}, \rho(\zeta)+i \operatorname{Im}(\Phi(\zeta, z))\right)$ and let J be the Jacobian of this change. Then

$$
\operatorname{det}(J)=\frac{\partial \operatorname{Im}(\Phi(\zeta, z))}{\partial x_{4}} \frac{\partial \rho(z)}{\partial x_{2}}-\frac{\partial \operatorname{Im}(\Phi(\zeta, z))}{\partial x_{2}} \frac{\partial \rho(z)}{\partial x_{4}}
$$

Since $\rho(z) \neq 0$, we can find a sufficiently small $0<\delta<c$ so that $\frac{\partial \rho}{\partial x_{4}}$ dominates others partial derivatives of ρ and $|z-\zeta| \leq \delta$. As a consequence, we have $\operatorname{det}(J) \neq 0$ on $|\zeta-z| \leq \delta$.

Now let $\delta^{\prime}>0$ depend on Ω, c, δ and ρ, and $u \in L^{1}(\Omega, d V)$. Since $\{(z, \zeta)$: $|\zeta-z|<c\}$, the kernel $G(\zeta, z)$ is bounded from above by

$$
\frac{|\zeta-z|}{|\Phi(\zeta, z)-\rho(\zeta)|^{3}} \lesssim \frac{1}{\left(|\rho(z)|+|\rho(\zeta)|+|\operatorname{Im} \Phi(\zeta, z)|+F\left(|\zeta-z|^{2}\right)\right)^{3}}
$$

and by Lemma 2.3, we have

$$
\begin{aligned}
\iint_{(\zeta, z) \in(\Omega \cap B(0, c / 2))^{2}} \mid & G(\zeta, z) u(\zeta) \mid d V(\zeta, z) \\
& \lesssim \iint_{(\alpha, w) \in\left(\Omega \cap B\left(0, \delta^{\prime}\right)\right) \times B\left(0, \delta^{\prime}\right)} \frac{|u(\alpha)|}{\left(\left|w_{2}\right|^{2}+F^{2}\left(\left|w_{1}\right|^{2}\right)\right)\left|w_{1}\right|} d V(\alpha, w) \\
& \lesssim\|u\|_{L^{1}(\Omega, d V)} \int_{0}^{\delta^{\prime}} \int_{0}^{\delta^{\prime}} \frac{r_{1} r_{2}}{\left(r_{2}^{2}+F^{2}\left(r_{1}^{2}\right)\right) r_{1}} d r_{2} d r_{1} \\
& \lesssim\|u\|_{L^{1}(\Omega, d V)} \int_{0}^{\delta^{\prime}} \ln F\left(r_{1}^{2}\right) d r_{1} \lesssim\|u\|_{L^{1}(\Omega, d V)}
\end{aligned}
$$

(by the property of F).
Therefore, we obtain the $L^{1}(\Omega, d V)$-boundedness.
Next, let $u \in L^{\infty}(\Omega)$. The Hölder's Inequality and Lemma 2.3 imply

$$
\begin{aligned}
& \int_{\Omega \cap B(0, c / 2)}\left|G(\zeta, z)\|u(\zeta) \mid d V(\zeta) \lesssim\| u \|_{L^{\infty}(\Omega)} \int_{\Omega \cap B(0, c / 2)} \frac{|\zeta-z|}{|\Phi(\zeta, z)-\rho(\zeta)|^{3}} d V(\zeta)\right. \\
& \lesssim\|u\|_{L^{\infty}(\Omega)} \int_{\Omega \cap B(0, \delta)} \frac{d V\left(w_{1}, w_{2}\right)}{\left(|\rho(z)|+\left|w_{2}\right|+F\left(\left|w_{1}\right|^{2}\right)\right)^{2}\left|w_{1}\right|} \\
& \lesssim\|u\|_{L^{\infty}(\Omega)} \int_{\left|\left(t_{1}, t_{2}, t_{3}, t_{4}\right)\right| \leq \delta} \frac{d t_{1} d t_{2} d t_{3} d t_{4}}{\left(|\rho(z)|+\left|t_{3}\right|+\left|t_{4}\right|+F\left(t_{1}^{2}+t_{2}^{2}\right)\right)^{2}\left|\left(t_{1}, t_{2}\right)\right|} \\
& \left(\text { where } w_{1}=t_{1}+\sqrt{-1} t_{2}, w_{2}=t_{3}+\sqrt{-1} t_{4}\right) \\
& \lesssim\|u\|_{L^{\infty}(\Omega)} \int_{\left|\left(t_{1}, t_{2}, t_{3}\right)\right| \leq \delta} \overline{d t_{1} d t_{2} d t_{3}} \\
& \lesssim\|u\|_{L^{\infty}(\Omega)} \int_{0}^{\delta}\left|\ln F\left(r^{2}\right)\right| d r \lesssim\|u\|_{L^{\infty}(\Omega)} \quad(\text { by the property of } F) .
\end{aligned}
$$

Hence the L^{∞}-boundedness is established and the proof of $L^{p}(\Omega, d V)$, for $p \in(1, \infty)$, is complete.

3.2. Proof of the assertion (2)

Since the continuity of \mathcal{B} in Theorem 2.6 and the fact that $\operatorname{Ker}[I-\mathcal{B}]=\{0\}, I-\mathcal{B}$ is a Fredholm isomorphism of $L^{\infty}(\Omega)$. Thus, it is sufficient to prove that \mathcal{G} maps continuously $L^{\infty}(\Omega)$ into $\operatorname{BlHol}(\Omega)$.

Let $u \in L^{\infty}(\Omega)$, we must show that

$$
\begin{equation*}
\left(\left|\rho(z)\left\|\mathcal{G} u(z)\left|+\left|\rho(z) \| \nabla_{z} \mathcal{G} u(z)\right|\right) \leq\right\| u \|_{\infty}\right.\right. \tag{3.1}
\end{equation*}
$$

for all $z \in \Omega$.
We consider the first term in (3.1). Since the integral $\int_{\Omega}|Q(\zeta, z)| d V(\zeta)$ is nonsingular, we have

$$
\left|\rho(z)\|\mathcal{G} u(z) \mid \lesssim\| u \|_{\infty}\left(1+|\rho(z)| \int_{\Omega} \mid \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)) \mid d V(\zeta))\right.\right.
$$

For $0<c<\sigma$ (c is the constant in Lemma 2.3), let $h \in C^{\infty}\left(\mathbb{C}^{2}\right)$ be a cutoff function such that $h=1$ on $\left\{\zeta \in \mathbb{C}^{2}:|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma / 2\right\}$ and $h=0$ on $\left\{\zeta \in \mathbb{C}^{2}:|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)>\sigma\right\}$. Then,

$$
\begin{aligned}
\int_{\Omega} & \mid \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)) \mid d V(\zeta) \\
& \lesssim 1+\int_{|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma} \mid \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)) \mid d V(\zeta) \\
& \lesssim \int_{|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma} \mid \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)) \mid d V(\zeta)
\end{aligned}
$$

Since $\left\lvert\, \bar{\partial}_{\zeta} \Omega_{0}\left((\widetilde{C}(\zeta, z)) \mid\right.$ is dominated by $\frac{|\zeta-z|}{|\Phi(\zeta, z)-\rho(\zeta)|^{3}}$ when ζ near to z, we obtain \right.

$$
\begin{aligned}
|\rho(z)| & \int_{|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma} \mid \bar{\partial}_{\zeta} \Omega_{0}((\widetilde{C}(\zeta, z)) \mid d V(\zeta) \\
& \lesssim \int_{|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma} \frac{|\zeta-z|}{|\Phi(\zeta, z)-\rho(\zeta)|^{2}} d V(\zeta)
\end{aligned}
$$

To estimate the last integral in the above inequality, we use the following Henkin coordinates on Ω (see [19, Lemma V3.4]). These coordinates do exist since $\left.\nabla \rho(\zeta)\right|_{\zeta=z}$ and $\left.\nabla \operatorname{Im} \Phi(\zeta, z)\right|_{\zeta=z}$ are nonzero and are not proportial.

Lemma 3.2 (Henkin's coordinates). There exist positive constants M, a and $\eta \leq c$, and, for each z with $\operatorname{dist}(z, b \Omega) \leq a$, there is a smooth local coordinate system $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t=t(\zeta, z)$ on the ball $B(z, c)$ such that we have

$$
\left\{\begin{array}{l}
t(z, z)=0 \\
t_{1}(\zeta)=\rho(\zeta)-\rho(z) \\
t_{2}(\zeta)=\operatorname{Im}(\Phi(\zeta, z)) \\
|t|<\delta \quad \text { for } \zeta \in B(z, c) \\
\left|J_{\mathbb{R}}(t)\right| \leq M \quad \text { and } \quad\left|\operatorname{det} J_{\mathbb{R}}(t)\right| \geq \frac{1}{M}
\end{array}\right.
$$

where $J_{\mathbb{R}}(t)$ is the Jacobian of the transformation t.

Therefore, for some $0<\sigma^{\prime}<\sigma$ small enough,

$$
\begin{aligned}
& \int_{|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im}(\Phi(\zeta, z))|+F\left(|\zeta-z|^{2}\right)<\sigma} \frac{1}{|\Phi(\zeta, z)-\rho(\zeta)|^{2}} d V(\zeta) \\
& \lesssim \int_{\left|\left(t_{1}, \ldots, t_{4}\right)\right| \leq \sigma} \frac{1}{\left(\left|t_{1}\right|+\left|t_{2}\right|+F\left(\left|\left(t_{3}, t_{4}\right)\right|^{2}\right)\right)^{2}} d t_{1} \ldots d t_{4} \\
& \lesssim \iint_{\left(r_{1}, r_{2}\right) \in\left(0, \sigma^{\prime}\right)^{2}} \frac{r_{1} r_{2}}{r_{1}^{2}+F^{2}\left(r_{2}^{2}\right)} d r_{1} d r_{2}
\end{aligned}
$$

(using the polar coordinates $r_{1}=\left|\left(t_{1}, t_{2}\right)\right|$ and $r_{2}=\left|\left(t_{3}, t_{4}\right)\right|$)

$$
\lesssim \int_{0}^{\sigma^{\prime}}\left|\ln F\left(r^{2}\right)\right| d r<\infty
$$

Next, for the second term in (3.1), we have the note that $\left|\frac{\partial}{\partial z_{j}} \bar{\partial}_{\zeta} \Omega_{0}(\widetilde{C}(\zeta, z))\right|$ is dominated by $\frac{1}{\Phi(\zeta, z)-\left.\rho(\zeta)\right|^{4}}$. Thus, for all $z \in \Omega$, using the Henkin coordinates and the cutoff function h again, we have

$$
\begin{aligned}
|\rho(z)|\left|\nabla_{z} \mathcal{G} u(z)\right| & \lesssim\|u\|_{\infty}\left(1+\int_{\Omega} h(\zeta) \frac{d V(\zeta)}{|\Phi(\zeta, z)-\rho(\zeta)|^{3}}\right) \\
& \lesssim\|u\|_{\infty}\left(1+\int_{\left|\left(t_{1}, \ldots, t_{4}\right)\right| \leq \sigma^{\prime}} \overline{\left(\left|t_{1}\right|+\left|t_{2}\right|+F\left(\left|\left(t_{3}, t_{4}\right)\right|^{2}\right)\right)^{2}\left|\left(t_{1}, \ldots, t_{4}\right)\right|}\right) \\
& \lesssim\|u\|_{\infty}\left(1+\int_{0}^{\sigma^{\prime}}\left|\ln F\left(r^{2}\right)\right| d r\right)<\infty
\end{aligned}
$$

Therefore, we conclude that for all $u \in L^{\infty}(\Omega), \mathcal{G}[u] \in \operatorname{BlHol}(\Omega)$. So \mathcal{P} is bounded from $L^{\infty}(\Omega)$ to $\operatorname{BlHol}(\Omega)$.

3.3. Proof of the assertion (3)

Let $u \in L^{1}(\Omega, P(\cdot, \cdot) d V)$. Firstly we have

$$
\begin{aligned}
\|\mathcal{P}[u]\|_{\operatorname{Besov}(\Omega)} & =\int_{\Omega}\left|\nabla_{z}^{3} \mathcal{P}[u](z)\right|(-\rho(z))^{3} P(z, z) d V(z) \\
& =\int_{\Omega}\left|\nabla_{z}^{3} \int_{\Omega} P(\zeta, z) u(\zeta) d V(\zeta)\right|(-\rho(z))^{3} P(z, z) d V(z) \\
& =\int_{\Omega}\left|\int_{\Omega} \nabla_{z}^{3} P(\zeta, z) u(\zeta) d V(\zeta)\right|(-\rho(z))^{3} P(z, z) d V(z) \\
& \leq \int_{\Omega} \int_{\Omega}\left|\nabla_{z}^{3} P(\zeta, z) u(\zeta)\right| d V(\zeta)(-\rho(z))^{3} P(z, z) d V(z) \\
& \leq \int_{\Omega} \int_{\Omega}\left|\nabla_{z}^{3} P(\zeta, z)\right|(-\rho(z))^{3} P(z, z) d V(z)|u(\zeta)| d V(\zeta)
\end{aligned}
$$

Secondly the (B)-property implies

$$
\int_{\Omega}\left|\nabla_{z}^{3} P(\zeta, z)\right|(-\rho(z))^{3} P(z, z) d V(z) \leq C_{\Omega} P(\zeta, \zeta)
$$

for all $\zeta \in \Omega$. Hence, combining these facts yields that

$$
\|\mathcal{P}[u]\|_{\operatorname{Besov}(\Omega)} \leq C_{\Omega} \int_{\Omega}\left|u(\zeta)\left\|P(\zeta, \zeta) \mid d V(\zeta)=C_{\Omega}\right\| u \|_{L^{1}(\Omega, P(\cdot, \cdot) d V)}\right.
$$

Therefore the proof of the assertion (3) is complete.

References

[1] D. Bekollé, Inégalités L^{p} pour les projecteurs de Bergman de certains domaines de \mathbb{C}^{2}, C. R. Acad. Sci. Paris Sér. I Math., 294(12)(1982), 395-397.
[2] P. Charpentier and Y. Dupain, Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat., 50(2)(2006), 413-446.
[3] S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP, Studies in Advanced Mathematics, AMS(2001).
[4] Z. Cuckovic and R. Zhao, Essential norm estimates of weighted composition operators between Bergman spaces on strongly pseudoconvex domains, Math. Proc. Camb. Phil. Soc., 145(2007), 525-533.
[5] L. K. Ha, Tangential Cauchy-Riemann equations on pseudoconvex boundaries of finite and infinite type in \mathbb{C}^{2}, Results in Math., 72(2017), 105-124.
[6] L. K. Ha, On the global Lipschitz continuity of the Bergman projection on a class of convex domains of infinite type in \mathbb{C}^{2}, Collo. Math., 150(2017), 187-205.
[7] L. K. Ha, C^{k}-estimates for $\bar{\partial}$-equation on certain convex domains of infinite type in \mathbb{C}^{n}, J. Geom. Anal., 31(2021), 2058-2087.
[8] L. K. Ha and L. H. Khoi, Composition Operators Between Hardy Spaces on Linearly Convex Domains in \mathbb{C}^{2}, Complex Anal. Oper. Theory, 13(2019), 2589-2603.
[9] L. K. Ha and L. H. Khoi, On boundedness and compactness of composition operators between Bergman spaces on infinite type convex domains in \mathbb{C}^{2}, (2023), DOI: 10.1080/17476933.2023.2221642.
[10] F. Haslinger, The $\bar{\partial}-$ Neumann operator and commutators of the Bergman projection and multiplication operators, Czechoslovak Math. J., 58(133)(2008), 1247-1256.
[11] L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$-operator, Acta Math., 113(1965), 89-152.
[12] N. Kerzman and E. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45(2)(1978), 197-224, DOI: 10.1215/S0012-7094-78-04513-1.
[13] S. Y. Li and W. Luo, On characterization of Besov space and application, Part I, J. of Math. Analysis and Applications, 310(2005), 477-491.
[14] E. Ligocka, The Bergman projection on harmonic functions, Studia Math., 85(1987), 229-246.
[15] J. D McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73(1)(1994), 177-199.
[16] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegp̈rojections on strongly pseudo-convex domains, Duke Math. J., 44(3)(1977), 695-704.
[17] M. Range, The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math., 78(1)(1978), 173-189.
[18] M. Range, On the Hölder estimates for $\bar{\partial}_{b} u=f$ on weakly pseudoconvex domains, Proc. Inter. Conf. Cortona, Italy 1976-1977. Scoula. Norm. Sup. Pisa, (1978) 247-267.
[19] M. Range, Holomorphic Functions and Integral Representation in Several Complex Variables, Springer, Berlin(1986).
[20] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer, Berlin(1980).

