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Abstract. The main purpose of this paper is to show that over a large class of bounded

domains Ω ⊂ C2, for 1 < p < ∞, the Bergman projection P is bounded from Lp(Ω, dV )

to the Bergman space Ap(Ω); from L∞(Ω) to the holomorphic Bloch space BlHol(Ω); and

from L1(Ω, P (z, z)dV ) to the holomorphic Besov space Besov(Ω), where P (ζ, z) is the

Bergman kernel for Ω.

1. Introduction

Let Ω be a bounded domain in C2 with smooth boundary bΩ. Let ρ be a defining
function for Ω so that Ω = {z ∈ C2 : ρ(z) < 0} and bΩ = {z ∈ C2 : ρ(z) = 0},
∇ρ ̸= 0 on bΩ. Let O(Ω) be the space of functions that are holomorphic in Ω, with
the topology of uniform convergence on compact subsets of Ω. For 1 < p < ∞,
let Lp(Ω, dV ) be the standard Lebesgue space over Ω with respect to the Lebesgue
volume measure dV of R4, and let the Bergman space Ap(Ω) = Lp(Ω, dV ) ∩ O(Ω).
The Bergman projection P is the orthogonal projection of L2(Ω) onto the Bergman
space A2(Ω). The most important property of the Bergman projection is that there
exists a function P : Ω× Ω → C such that

(1.1) P[u](z) =

∫
Ω

u(ζ)P (ζ, z) dV (ζ),

for all u ∈ L2(Ω), z ∈ Ω. Here, P (ζ, z) is the Bergman kernel on Ω, which is
holomorphic with respect to z ∈ Ω, and anti-holomorphic in ζ. In this paper, we

Received December 14, 2020; revised June 11, 2021; accepted June 14, 2021.
2020 Mathematics Subject Classification: 32H10, 32F18, 46E20, 46E99.
Key words and phrases: Bergman projection, Bloch functions, Besov functions, fi-
nite/infinite type.
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM)
under grant number T2022-18-01.

413



414 Ly Kim Ha

investigate the Lp(Ω)-boundedness of the projection P. In the recent forty years,
there have been many papers focused on studying Lp(Ω)-boundedness (see for ex-
ample [16, 1, 14, 15, 2]) and its applications in studying commutator operators (see
for example [10]), composition operators (see for example [4, 9]). Although there
are many results on the Lp(Ω)-boundedness, the case p = 1 and the case p = ∞ are
still open. In this paper, we provide an answer to solve these problems.

Definition 1.1. ([13, p. 478]) A differentiable function u on Ω is said to be a Bloch
function if and only if

∥u∥Bl(Ω) = sup
z∈Ω

(|ρ(z)||u(z)|+ |ρ(z)||∇u(z)|) < ∞.

The space of all Bloch functions defined on Ω is denoted by Bl(Ω) and by
BlHol(Ω) = Bl(Ω) ∩ O(Ω) the space of holomorphic Bloch functions on Ω. We
also define ∥u∥BlHol(Ω) = ∥u∥Bl(Ω) for all u ∈ BlHol(Ω).

Since P (z, z) > 0 for all z ∈ Ω, P (z, z)dV (z) is a biholomorphically invariant
measure of Ω.

Definition 1.2. A function u ∈ A2(Ω, dV ) is said to be a Besov function if and
only if

∥u∥Besov(Ω) =

(∫
Ω

|∇3u(z)|(−ρ(z))3P (z, z)dV (z)

)
< ∞,

where |∇3u(z)| =
∑

1≤j+k≤3

∣∣∣∣∣ ∂j+ku

∂zj1∂z
k
2

(z)

∣∣∣∣∣. The space of all holomorphic Besov func-

tions defined on Ω is denoted by Besov(Ω). Here we have an explanation for this
definition. Assume that Ω is a smoothly bounded, strongly pseudoconvex domains.
The classical Besov space B(Ω) is a subspace of A2(Ω, dV ) in which we equip the
semi-norm

∥u∥B =

∫
Ω

|∇u(z)|(−ρ(z))P (z, z)dV (z) < ∞.

Since
∫
Ω
(−ρ(z))−1dV (z) = ∞, (B(Ω), ∥ · ∥B) consists only constant functions on Ω.

In order to make more natural, we use the semi-norm ∥ · ∥Besov(Ω) instead of ∥ · ∥B .
This idea was used in [13] for strongly pseudoconvex domains.

The main result in this paper is following.

Main Theorem. Let Ω be a smoothly bounded convex domain in C2 admitting a
type F at all boundary points (see Definition 2.2) and satisfying the condition (B)
(see Definition 2.4). Then the Bergman projection is bounded from:

1. Lp(Ω, dV ) to Ap(Ω, dV ) for all 1 < p < ∞.

2. L∞(Ω) to BlHol(Ω).
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3. L1(Ω, P (z, z)) to Besov(Ω).

Phong and Stein in [16] established the Lp → Ap boundedness when Ω is a
strongly pseudoconvex domain. Then, this result was generalized to a certain class
of convex domains in C2 (see [1]) and to finite type convex domains in Cn (see
[15]). Even when Ω is the unit ball in Cn, for n ≥ 2, the Bergman projection P

can not be extended continuously from Lp(Ω) onto Ap(Ω) when p = 1 or p =
∞ (for example, see [20, Section 7.1]). In [14], using Cauchy-Fantappiè integral
theory, Ligocka obtained the L∞(Ω) → BlHol(Ω) boundedness on bounded strongly
pseudoconvex domains. Recently, in studying Besov spaces on general domains in
Cn, Li and Luo (see [13]) have proved the L1(Ω, P (z, z)) → Besov(Ω) boundedness
also on bounded strongly pseudoconvex domains or convex domains of finite type
in C2.

The structure of the paper is as follows. Section 2 deals with preliminaries
for the Bergman projection in terms of Cauchy-Fantappiè forms on convex domains
admitting the F -type condition. Section 3 deals with the proof of the Main Theorem.

2. Preliminaries

Let Ω ⊂ C2 be a bounded convex domain with smooth boundary bΩ with a
defining function ρ. By the hypothesis that Ω is convex,

4∑
i,j=1

∂2ρ

∂xi∂xj
(x)aiaj ≥ 0,

in which x ∈ bΩ, zj = x2j−1 +
√
−1x2j and a ∈ R4 be a non-zero vector such that∑4

j=1 aj
∂ρ
∂xj

(x) = 0 on bΩ. Let us define, for (ζ, z) ∈ bΩ× Ω:

(2.1) Φ(ζ, z) =

2∑
j=1

∂ρ

∂ζj
(ζ)(ζj − zj).

The convexity of Ω gives

Re

 2∑
j=1

∂ρ

∂ζj
(ζ)(ζj − zj)

 ̸= 0,

so that Φ(ζ, z) ̸= 0 for all ζ ∈ bΩ, z ∈ Ω. Moreover, the following lemma proved in
[17] is a consequence of the definition of Φ(ζ, z).

Lemma 2.1. For any P ∈ bΩ, there are positive constants δ, c such that for all
boundary points ζ ∈ bΩ ∩B(P, δ), we have

1. Φ(ζ, z) is holomorphic in z ∈ B(ζ, δ);
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2. Φ(ζ, ζ) = 0, and dzΦ|z=ζ ̸= 0;

3. There exists a constant A > 0 such that |Φ(ζ, z)| ≥ A for all z ∈ Ω and
|z − ζ| ≥ c;

4. ρ(z) > 0 for all z with Φ(ζ, z) = 0 and 0 < |z − ζ| < c.

Now we set

C(ζ, z) =
1

2πi

 2∑
j=1

∂ρ

∂ζj
(ζ)dζj

 1

Φ(ζ, z)
for (ζ, z) ∈ bΩ× Ω,

which is a (1, 0)-form of ζ-variables. The Cauchy-Leray kernel for the convex domain
Ω is

Ω0 (C(ζ, z)) = C(ζ, z) ∧ (∂̄ζC(ζ, z))(2.2)

=
∑

j0∈{1,2}

Aj0(ζ)

Φ2(ζ, z)
dζ1 ∧ dζ2 ∧ dζ̄j0 ,(2.3)

which is a Cauchy-Fantappiè (2, 1)-form on bΩ × Ω, where Aj0(ζ) is a polynomial
involving first and second derivatives in ζ of ρ.

For each z ∈ Ω we extend C(., z) smoothly to the interior of Ω as follows

C̃(ζ, z) =
1

2πi

 2∑
j=1

∂ρ

∂ζj
(ζ)dζj

 1

Φ(ζ, z)− ρ(ζ)
.

Definition 2.2. Let F : [0,∞) → [0,∞) be a smooth, strictly increasing function
such that

1. F (0) = 0,

2.

∫ σ

0

∣∣lnF (r2)
∣∣ dr < ∞ for some σ > 0 which is small enough,

3.
F (t)

t
is non-decreasing function.

Let Ω ⊂ C2 be a smooth bounded, convex domain. We say that Ω admitting F -
type at a point P ∈ bΩ if there are positive constants c, c′ satisfy that for all
ζ ∈ bΩ ∩B(P, c′):

ρ(z) ≳ F (|z − ζ|2),

for all z ∈ B(ζ, c) with Φ(ζ, z) = 0.
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If Ω admits the same F -type at every point on bΩ, we simply call that Ω
admitting F -type. In case F (t) = tm, for m = 1, 2, . . ., the F -type notion agrees
with the finite type condition in the sense of Range in [17, 18]. Here the notation
B(ζ, r) means the Euclidean ball centered at ζ of radius r > 0. Also the notations ≲
and ≳ denote inequalities up to a positive constant, and ≈ means the combination
of ≲ and ≳.

Some examples to illustrate that the F -type condition consists a large class of
convex domains of finite and infinite type in C2 can be found in [8, 9].

The following lemma provides the important lower estimate for the Cauchy-
Fantappiè form. Its proof is rather similar to the proof of [5, Lemma 3.3] with a
negligible modification and can be found in [7, before Corollary 2.6].

Lemma 2.3. Let Ω be a smoothly bounded, convex domain in C2 admitting an F -
type at P ∈ bΩ. Then there is a positive constant c such that the support function
Φ(ζ, z) satisfies the following estimate

(2.4) |Φ(ζ, z)− ρ(ζ)| ≳ |ρ(ζ)|+ |ρ(z)|+ | ImΦ(ζ, z)|+ F (|z − ζ|2),

for every ζ ∈ Ω̄ ∩B(P, c), and z ∈ Ω, |z − ζ| < c.

Definition 2.4. ([13, Definition 2.1]) We say that a smoothly bounded domain
Ω ⊂ C2 has B-property if there is a positive constant CΩ such that the following
holds:

(−ρ(ζ))3
∫
Ω

|∇3
zP (ζ, z)|dV (z) +

1

P (ζ, ζ)

∫
Ω

|∇3
zP (ζ, z)|(−ρ(z))3P (z, z)dV (z) ≤ CΩ

for all ζ ∈ Ω.

In C2, there are many bounded domains which admitting a type F at all bound-
ary points and satisfying the condition (B). Firstly, all strictly convex domains in
C2 admits type F (t) = t at all boundary points. Secondly, let m1,m2 be positive
integers, and let

Ωm = {(z1, z2) ∈ C2 : |z1|2m1 + |z2|2m2 − 1 < 0}

be convex domain in C2. The family {Ωm} is the certain class of weakly convex
domains in C2. Then, in [5], the author shows that Ωm admits type F (t) = tm at all
boundary points. In [13, p. 480-p. 481], it is proved that any strictly convex domain
or any Ωm satisfies B-property.

For u ∈ C1(Ω) ∩ O(Ω) and u is holomorphic on Ω, by the Stoke Theorem, we
get

u(z) =

∫
Ω

u(ζ)∂̄ζΩ0(C̃(ζ, z)), z ∈ Ω.(2.5)

By the smoothness of each component in Ω0((C̃(ζ, z)) then the form ∂̄ζΩ0((C̃(ζ, z))
also is a smooth form on (Ω̄× Ω) \ {(z, z), z ∈ bΩ}.
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For 0 < c < δ (c is the constant in Lemma 2.3), let us define Ωδ = {z ∈ C2 :
ρ(z) < δ} and let Pz be the Hörmander solution operator to the ∂̄-equation in the
variables z ∈ Ωδ (the existence of Pz can be found in [11]).

Definition 2.5. For (ζ, z) ∈ Ω× Ωδ, let us define

Q(ζ, z) = −Pz(∂̄z∂̄ζΩ0((C̃(ζ, z))),

G(ζ, z) = Q(ζ, z) + ∂̄ζΩ0((C̃(ζ, z)),

where G(ζ, z) is holomorphic in z.

The fact Q(ζ, z) ∈ C∞(Ω)× C1(Ω) implies that

G(ζ, z) =
1

π2

1

(Φ(ζ, z)− ρ(ζ)3

O(|ζ − z|) + det


ρ(ζ)

∂ρ

∂ζ1
(ζ)

∂ρ

∂ζ2
(ζ)

∂ρ

∂ζ̄1
(ζ)

∂2ρ

∂ζ1∂ζ̄1
(ζ)

∂2ρ

∂ζ2∂ζ̄1
(ζ)

∂ρ

∂ζ̄2
(ζ)

∂2ρ

∂ζ1∂ζ̄2
(ζ)

∂2ρ

∂ζ2∂ζ̄2
(ζ)




dζ1 ∧ dζ̄1 ∧ dζ2 ∧ dζ̄2 + non-singular terms.

Let u be a holomorphic function defined on Ωδ, since∫
Ω

u(ζ)Pz(∂̄z∂̄ζΩ0((C̃(ζ, z))) =

∫
Ω

Pz(u(ζ)∂̄z∂̄ζΩ0((C̃(ζ, z)))

= Pz(

∫
Ω

u(ζ)∂̄z∂̄ζΩ0((C̃(ζ, z)))

= Pz(

∫
Ω

u(ζ)∂̄ζ ∂̄zΩ0((C̃(ζ, z)))

= Pz(

∫
bΩ

u(ζ)∂̄zΩ0((C̃(ζ, z)))

= 0 (see [12, 1.4.2]),

we have the reproductive property of G(ζ, z) that u(z) =

∫
Ω

u(ζ)G(ζ, z) for all

z ∈ Ω. More generally, let u ∈ L2(Ω), and let us define

G[u](z) =

∫
Ω

u(ζ)G(ζ, z)

and its dual

G∗[u](z) =

∫
Ω

u(ζ)G(ζ, z).

Then G : L2(Ω) → A2(Ω) is a well-defined, continuous operator. Moreover, we also
have:
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Theorem 2.6. ([6, Theorem 3.4][Ligocka’s decomposition]) Let Ω ⊂ C2 be a
smoothly bounded, convex domain. Assume that Ω admits a F -type at all boundary
points for some function F . Then P[u](z) = G(I −B)−1[u](z) = (I +B)−1G∗[u](z),
where

B[u](z) = G∗[u](z)− G[u](z).

3. Proof of the Main Theorem

3.1. Proof of the assertion (1)

This fact has been proved in [9]. For convenience, we briefly sketch its proof here. The
Lp(Ω, dV )-boundedness (for p ∈ (1,∞)) is a consequence of the following lemma.

Lemma 3.1. The operators G and G∗ are bounded on Lp(Ω, dV ). In particular, we
have

∥G[u]∥Lp(Ω,dV ) ≲ ∥u∥Lp(Ω,dV ) for all u ∈ Lp(Ω, dV ), 1 ≤ p ≤ ∞,

and

∥G∗[u]∥Lp(Ω,dV ) ≲ ∥u∥Lp(Ω,dV ) for all u ∈ Lp(Ω, dV ), 1 < p < ∞.

Due to the strong duality and the Marcinkiewicz Interpolation Theorem from
harmonic analysis (see Theorem B.7, Appendix B in [3] for more details), it is
sufficient to show that

∥G[u]∥L1(Ω,dV ) ≲ ∥u∥L1(Ω,dV ) and ∥G[u]∥L∞(Ω,dV ) ≲ ∥u∥L∞(Ω,dV ).

Firstly, we recall the change of variables (α,w) = (α1, α2, w1, w2) = (ζ1, ζ2, z1−
ζ1, ρ(ζ) + iIm(Φ(ζ, z))) and let J be the Jacobian of this change. Then

det(J) =
∂Im(Φ(ζ, z))

∂x4

∂ρ(z)

∂x2
− ∂Im(Φ(ζ, z))

∂x2

∂ρ(z)

∂x4
.

Since ρ(z) ̸= 0, we can find a sufficiently small 0 < δ < c so that
∂ρ

∂x4
dominates

others partial derivatives of ρ and |z−ζ| ≤ δ. As a consequence, we have det(J) ̸= 0
on |ζ − z| ≤ δ.

Now let δ′ > 0 depend on Ω, c, δ and ρ, and u ∈ L1(Ω, dV ). Since {(z, ζ) :
|ζ − z| < c}, the kernel G(ζ, z) is bounded from above by

|ζ − z|
|Φ(ζ, z)− ρ(ζ)|3

≲
1

(|ρ(z)|+ |ρ(ζ)|+ | ImΦ(ζ, z)|+ F (|ζ − z|2))3
.
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and by Lemma 2.3, we have∫∫
(ζ,z)∈(Ω∩B(0,c/2))2

|G(ζ, z)u(ζ)| dV (ζ, z)

≲
∫∫

(α,w)∈(Ω∩B(0,δ′))×B(0,δ′)

|u(α)|
(|w2|2 + F 2(|w1|2))|w1|

dV (α,w)

≲ ∥u∥L1(Ω,dV )

∫ δ′

0

∫ δ′

0

r1r2
(r22 + F 2(r21))r1

dr2 dr1

≲ ∥u∥L1(Ω,dV )

∫ δ′

0

lnF (r21) dr1 ≲ ∥u∥L1(Ω,dV )

(by the property of F ).

Therefore, we obtain the L1(Ω, dV )-boundedness.
Next, let u ∈ L∞(Ω). The Hölder’s Inequality and Lemma 2.3 imply∫

Ω∩B(0,c/2)

|G(ζ, z)∥u(ζ)|dV (ζ) ≲ ∥u∥L∞(Ω)

∫
Ω∩B(0,c/2)

|ζ − z|
|Φ(ζ, z)− ρ(ζ)|3

dV (ζ)

≲ ∥u∥L∞(Ω)

∫
Ω∩B(0,δ)

dV (w1, w2)

(|ρ(z)|+ |w2|+ F (|w1|2))2|w1|

≲ ∥u∥L∞(Ω)

∫
|(t1,t2,t3,t4)|≤δ

dt1dt2dt3dt4
(|ρ(z)|+ |t3|+ |t4|+ F (t21 + t22))

2|(t1, t2)|

(where w1 = t1 +
√
−1t2, w2 = t3 +

√
−1t4)

≲ ∥u∥L∞(Ω)

∫
|(t1,t2,t3)|≤δ

dt1dt2dt3
(|ρ(z)|+ |t3|+ F (t21 + t22))|(t1, t2)|

≲ ∥u∥L∞(Ω)

∫ δ

0

| lnF (r2)|dr ≲ ∥u∥L∞(Ω) (by the property of F ).

Hence the L∞-boundedness is established and the proof of Lp(Ω, dV ), for p ∈ (1,∞),
is complete.

3.2. Proof of the assertion (2)

Since the continuity of B in Theorem 2.6 and the fact that Ker[I −B] = {0}, I −B

is a Fredholm isomorphism of L∞(Ω). Thus, it is sufficient to prove that G maps
continuously L∞(Ω) into BlHol(Ω).

Let u ∈ L∞(Ω), we must show that

(3.1) (|ρ(z)||Gu(z)|+ |ρ(z)||∇zGu(z)|) ≤ ∥u∥∞
for all z ∈ Ω.

We consider the first term in (3.1). Since the integral
∫
Ω
|Q(ζ, z)| dV (ζ) is non-

singular, we have

|ρ(z)||Gu(z)| ≲ ∥u∥∞
(
1 + |ρ(z)|

∫
Ω

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV (ζ)

)
.
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For 0 < c < σ (c is the constant in Lemma 2.3), let h ∈ C∞(C2) be a cutoff function
such that h = 1 on {ζ ∈ C2 : |ρ(ζ)| + |ρ(z)| + | Im(Φ(ζ, z))| + F (|ζ − z|2) < σ/2}
and h = 0 on {ζ ∈ C2 : |ρ(ζ)|+ |ρ(z)|+ | Im(Φ(ζ, z))|+ F (|ζ − z|2) > σ}. Then,

∫
Ω

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV (ζ)

≲ 1 +

∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F (|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV (ζ)

≲
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F (|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV (ζ).

Since |∂̄ζΩ0((C̃(ζ, z))| is dominated by
|ζ − z|

|Φ(ζ, z)− ρ(ζ)|3
when ζ near to z, we obtain

|ρ(z)|
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F (|ζ−z|2)<σ

∣∣∣∂̄ζΩ0((C̃(ζ, z))
∣∣∣ dV (ζ)

≲
∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F (|ζ−z|2)<σ

|ζ − z|
|Φ(ζ, z)− ρ(ζ)|2

dV (ζ).

To estimate the last integral in the above inequality, we use the following Henkin
coordinates on Ω (see [19, Lemma V3.4]). These coordinates do exist since∇ρ(ζ)|ζ=z

and ∇ImΦ(ζ, z)|ζ=z are nonzero and are not proportial.

Lemma 3.2 (Henkin’s coordinates). There exist positive constants M,a and η ≤ c,
and, for each z with dist(z, bΩ) ≤ a, there is a smooth local coordinate system
(t1, t2, t3, t4) = t = t(ζ, z) on the ball B(z, c) such that we have



t(z, z) = 0,

t1(ζ) = ρ(ζ)− ρ(z),

t2(ζ) = Im(Φ(ζ, z)),

|t| < δ for ζ ∈ B(z, c),

|JR(t)| ≤ M and |detJR(t)| ≥ 1
M ,

where JR(t) is the Jacobian of the transformation t.
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Therefore, for some 0 < σ′ < σ small enough,∫
|ρ(ζ)|+|ρ(z)|+| Im(Φ(ζ,z))|+F (|ζ−z|2)<σ

1

|Φ(ζ, z)− ρ(ζ)|2
dV (ζ)

≲
∫
|(t1,...,t4)|≤σ

1

(|t1|+ |t2|+ F (|(t3, t4)|2))2
dt1 . . . dt4

≲
∫∫

(r1,r2)∈(0,σ′)2

r1r2
r21 + F 2(r22)

dr1dr2

(using the polar coordinates r1 = |(t1, t2)| and r2 = |(t3, t4)|)

≲
∫ σ′

0

| lnF (r2)|dr < ∞.

Next, for the second term in (3.1), we have the note that
∣∣∣ ∂
∂zj

∂̄ζΩ0(C̃(ζ, z))
∣∣∣ is

dominated by 1
|Φ(ζ,z)−ρ(ζ)|4 . Thus, for all z ∈ Ω, using the Henkin coordinates and

the cutoff function h again, we have

|ρ(z)| |∇zGu(z)| ≲ ∥u∥∞
(
1 +

∫
Ω

h(ζ)
dV (ζ)

|Φ(ζ, z)− ρ(ζ)|3

)
≲ ∥u∥∞

(
1 +

∫
|(t1,...,t4)|≤σ′

dt1 . . . dt4
(|t1|+ |t2|+ F (|(t3, t4)|2))2|(t1, . . . , t4)|

)

≲ ∥u∥∞

(
1 +

∫ σ′

0

| lnF (r2)|dr

)
< ∞.

Therefore, we conclude that for all u ∈ L∞(Ω), G[u] ∈ BlHol(Ω). So P is bounded
from L∞(Ω) to BlHol(Ω).

3.3. Proof of the assertion (3)

Let u ∈ L1(Ω, P (·, ·)dV ). Firstly we have

∥P[u]∥Besov(Ω) =

∫
Ω

|∇3
zP[u](z)|(−ρ(z))3P (z, z)dV (z)

=

∫
Ω

∣∣∣∣∇3
z

∫
Ω

P (ζ, z)u(ζ)dV (ζ)

∣∣∣∣ (−ρ(z))3P (z, z)dV (z)

=

∫
Ω

∣∣∣∣∫
Ω

∇3
zP (ζ, z)u(ζ)dV (ζ)

∣∣∣∣ (−ρ(z))3P (z, z)dV (z)

≤
∫
Ω

∫
Ω

|∇3
zP (ζ, z)u(ζ)|dV (ζ)(−ρ(z))3P (z, z)dV (z)

≤
∫
Ω

∫
Ω

|∇3
zP (ζ, z)|(−ρ(z))3P (z, z)dV (z)|u(ζ)|dV (ζ).
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Secondly the (B)-property implies∫
Ω

|∇3
zP (ζ, z)|(−ρ(z))3P (z, z)dV (z) ≤ CΩP (ζ, ζ)

for all ζ ∈ Ω. Hence, combining these facts yields that

∥P[u]∥Besov(Ω) ≤ CΩ

∫
Ω

|u(ζ)||P (ζ, ζ)|dV (ζ) = CΩ∥u∥L1(Ω,P (·,·)dV ).

Therefore the proof of the assertion (3) is complete.
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