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A NEW FUNCTION SPACE Lα(X)
VERSION 1.1

Hee Chul Pak* and Sang-Hoon Chang**

Abstract. We develop a new function space Lα(X) that general-
izes the classical Lebesgue space Lp(X). The generalization is fo-
cused on a better explanation of the flux terms arising from many
dynamics.

1. Introduction

The function space of pth-power summable functions Lp(X) has been
commonly used in analysis since the beginning of the 20th century. The
spaces Lp(X)(named the classical Lebesgue space) are of such extreme
importance since it has fundamental roles in modern analysis and it has
not been replaced by significantly different, better function spaces. In
fact, Lp(X) formulates basic structures on another function spaces such
as (fractional) Sobolev spaces W s,p, Besov spaces Bs

p,q, Triebel-Lizorkin
spaces F s

p,q. Even more, by virtue of Littlewood-Paley decomposition, it
has been known that the spaces Lp(X) have a connection with Hölder
spaces Cs, Zygmund spaces Λs and BMO. In this sense one may say
that all of those spaces are under the influence of Lp(X).

In this paper we attempt to develop a new function space that gen-
eralizes the classical Lebesgue space. The motivation of this research
starts from a close look at the Lp-norm: ‖f‖Lp =

(∫
X |f(x)|p dµ

)1/p of
the classical Lebesgue spaces Lp(X), 1 ≤ p < ∞. It can be rewritten as

‖f‖Lp := α−1

(∫

X
α(|f(x)|) dµ

)
,
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with

α(x) := xp.

Even though the positive-real-variable function α(x) := xp has very
beautiful and convenient algebraic and geometric properties(Section 2.1),
it also has some practical limitations. One of such practical examples
which cannot be overlooked arises from some problems of partial differ-
ential equations which contain the flux term J: for example, the elliptic
equations:

−∇ · J = f

the parabolic equations:
∂

∂t
c(u)−∇ · J = f

(and also hyperbolic problems, of course). We explain the flux terms
of the above equations in detail because not only is it related with our
forthcoming study [4] but also it justifies this report.

For an irrotational flux(∇× J = 0), J can be written as J = ∇φ(u)
with a prescribed physical content u (in a simply connected domain).
In general, physical observations tell us that J depends on u and its
gradient at each point x, that is, J = J(x,∇, u(x)). Therefore for the
linear case, one can simply represent J as J = c∇u (on isotropic medium)
or J = A∇u with a square matrix A (on an-isotropic medium). But for
the nonlinear case, the situation can be much more complicated. One
of the most common assumptions is that J = |∇u|p−2∇u is to produce
the p-Laplacian

∆p u := ∇ · |∇u|p−2∇u.

Putting so, one of the main benefits of what we may get in working
with this new function spaces is that solutions can be discussed inside
the underlying set Lp. Even though, slightly more generally, the Leray-
Lions type conditions1 might be given on J, it is still dominated by Lp-
theory[3]. Hence we carefully point out that the growth condition of the
flux is artificial enough to handle those solutions inside Lp hierarchy. But
in practical physical problems, the flux may not be so nice as the above.
Our new function space is designed to handle solutions of nonlinear
equations having more general flux term than the equations having either
p-Laplacian or flux term of the Leray-Lions type conditions[4].

1there are positive constants c1, c2 such that for all ξ ∈ Rn and almost every x

c1|ξ|p ≤ J(x, ξ) · ξ, |J(x, ξ)| ≤ c2|ξ|p−1.
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2. The space Lα(X)

We introduce some terminologies to define Lebesgue type function
spaces Lα(X), which generalize the classical Lebesgue spaces Lp(X). In
this paper, (X, M, µ) always represents a given measurable space.

A pre-Hölder’s function α : R+ → R+
2 is an absolutely continuous

bijective function satisfying

[H1] α(0) = 0, α(1) = 1.

Suppose there exists a pre-Hölder’s function β satisfying

[H2] α−1(x)β−1(x) = x for all x ≥ 0,

then β is called the conjugate (pre-Hölder’s) function of α. A typical
example of pre-Hölder’s functions is α(x) = xp, p > 1 with the conjugate
function β(x) = xq, 1

p + 1
q = 1. In the relation [H2], the notation α−1,

β−1 are meant to be the inverse functions of α, β, respectively. In the
following, a function g represents the two-variable function g on R+×R+

defined by:
g(x, y) := α−1(x)β−1(y)

provided that those pre-Hölder’s pair (α, β) exists.

Definition 2.1. A pre-Hölder’s function α : R+ → R+ together with
the conjugate function β is said to be a Hölder’s function if for any pos-
itive constants a, b > 0, there exist positive constants θ1, θ2 (depending
on a, b) such that

θ1 + θ2 ≤ 1
and that a comparable condition

[H3] g(x, y) ≤ θ1
ab

α(b)
x + θ2

ab

β(a)
y

holds for all (x, y) ∈ R+ × R+.

The above definition means that the linear transformation

T (x, y) := θ1
ab

α(b)
x + θ2

ab

β(a)
y

= (θ1 θ2)
( b

α(b) 0
0 b

)(
a 0
0 a

β(a)

)(
x
y

)

is greater than or equal to g; that is to say,

g(x, y) ≤ T (x, y)

2R+ = {x ∈ R : x ≥ 0}
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for all (x, y) ∈ R2
+. In this sense we call it a dominating plane of g.

First, we introduce some basic useful identities for a pre-Hölder’s pair
(α, β). We solve for β−1(x) in the conjugate identity α−1(x)β−1(x) = x

to get β−1(x) =
x

α−1(x)
, which in turn yields

x = β

(
x

α−1(x)

)
or α(x) = β

(
α(x)

x

)
.(1)

Similarly, from a variance of the conjugate identity: α−1(x) =
x

β−1(x)
,

we have

x =
α(x)

β−1(α(x))
.(2)

Also, differentiating on both sides of α−1(x)β−1(x) = x (if they are
differentiable), we can obtain

β−1(x)
α′(α−1(x))

+
α−1(x)

β′(β−1(x))
= 1.(3)

Then we have for α(x) = β(y), that is, for y := α(x)
x ,

y

α′(x)
+

x

β′(y)
= 1.(4)

Therefore we get

α′(x) =
α(x)

x
+

α(x)

β′
(

α(x)
x

)
− x

.(5)

We say that α obeys a commutative condition if

[β, α](x) := β ◦ α ◦ β−1 ◦ α−1(x) = x [C]

for all x ≥ 0. Then it is easy to check that

β ◦ α ◦ β−1 = α, β ◦ α−1 ◦ β−1 = α−1 and α−1 ◦ β ◦ α = β.

Identities above together with the conjugate identity (1) lead to get

β ◦ α−1

(
α(a)

a

)
= β ◦ α−1 ◦ β−1 ◦ β

(
α(a)

a

)

= (β ◦ α−1 ◦ β−1) ◦ α(a) = α−1 ◦ α(a) = a,

and

α ◦ β−1

(
β(a)

a

)
= a,
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for any a > 0. Therefore we can notice that

α(x)
x

=
(

β(x)
x

)−1

= α ◦ β−1(x) = β−1 ◦ α(x),(6)

x > 0, provided that the pre-Hölder’s function α is commutative with
its conjugate function β.

2.1. Classical Lebesgue spaces

The Lp-norm ‖f‖Lp of the classical Lebesgue spaces Lp(X), 1 ≤ p <
∞ can be rewritten as

‖f‖Lp := α−1

(∫

X
α(|f(x)|) dµ

)
,

where we let

α(x) := xp.

Besides the fact that α(x) = xp is a pre-Hölder’s function, the main
ingredients of α(x) = xp in this case are;

(A) α satisfies a sub-homomorphic condition:

α(xy) ≥ α(x)α(y) [H3′]

for all x, y > 0, and
(B) the α is convex on R+.

In fact, these conditions have a close connection with the comparable
condition [H3]. To illustrate this we first observe that the condition
[H3′] leads to

α−1(xy) ≤ α−1(x)α−1(y) and β−1(xy) ≥ β−1(x)β−1(y),(7)

and the convexity of α implies the concaveness of α−1.

Lemma 2.1. Let α be a convex pre-Hölder’s function satisfying the
sub-homomorphic condition [H3′] and posses the corresponding conju-
gate function β. Then for every point t ∈ R+ at which α is differentiable,
we have

g(x, y) := α−1(x)β−1(y) ≤ β−1(t)
α′(α−1(t))

x +
α−1(t)

β′(β−1(t))
y

for all x, y ≥ 0.
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Proof. We compute

∇g(t, t) =
(

β−1(t)
α′(α−1(t))

,
α−1(t)

β′(β−1(t))

)

to find the tangent plane to the graph of the function g at (t, t). We
obtain the equation of the tangent plane:

z = gx(t, t)(x− t) + gy(t, t)(y − t) + g(t, t)

=
β−1(t)

α′(α−1(t))
(x− t) +

α−1(t)
β′(β−1(t))

(y − t) + α−1(t)β−1(t)

=
β−1(t)

α′(α−1(t))
x +

α−1(t)
β′(β−1(t))

y ≡ T (x, y)

by virtue of the identity (3) and the conjugate identity α−1(t)β−1(t) = t.
Since the restriction z = T (x, 1) of the tangent plane z = T (x, y) is the
tangent line to the graph g(x, 1) = α−1(x) located inside x-z plane and
α−1 is concave up on R+, we obtain inequality

α−1(x) = g(x, 1) ≤ T (x, 1) =
β−1(t)

α′(α−1(t))
x +

α−1(t)
β′(β−1(t))

.

For any x, y > 0, we write x := λy for some λ > 0 to have

α−1(x) ≤ α−1(λ)α−1(y).

Therefore we conclude

g(x, y) = α−1(x)β−1(y) ≤ α−1(λ) α−1(y)β−1(y)

= α−1(λ)y

≤
(

β−1(t)
α′(α−1(t))

λ +
α−1(t)

β′(β−1(t))

)
y

=
β−1(t)

α′(α−1(t))
x +

α−1(t)
β′(β−1(t))

y,

where we used the fact that α−1(y)β−1(y) = y.

Suppose that α is a function obeying the conditions in Lemma 2.1,
and that the conjugate function β of α also satisfies the sub-homomorphic
condition [H3′]. Then we can easily see that both α and β are (multi-
plicative) homomorphisms:

α(xy) = α(x)α(y) and β(xy) = β(x)β(y).(8)
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Corollary 2.2. Any convex pre-Hölder’s function α with the homo-
morphic condition satisfies the comparable condition [H3] if there exists
the conjugate function β of α. In fact, for any point t ∈ R+ at which α
is differentiable, we have

g(x, y) ≤ β−1(t)
α′(α−1(t))

ab

α(b)
x +

α−1(t)
β′(β−1(t))

ab

β(a)
y

for all x, y ≥ 0. Therefore α is a Hölder’s function.

Proof. For any b > 0, one of the conjugate identities (1) leads to have

β ◦ α−1

(
α(b)

b

)
= β

(
b

α−1(b)

)
= b.

Similarly, we have for a > 0,

α ◦ β−1

(
β(a)

a

)
= a.

Hence by virtue of the homomorphic properties, we obtain

α−1(x)β−1(y) = α−1

(
b

α(b)
α(b)

b
x

)
β−1(y)

= α−1

(
b

α(b)
x

)(
α−1

(
α(b)

b

)
β−1(y)

)

= α−1

(
b

α(b)
x

)
β−1

(
β ◦ α−1

(
α(b)

b

)
y

)

= α−1

(
b

α(b)
x

)
β−1 (b y)

≤ β−1(t)
α′(α−1(t))

b

α(b)
x +

α−1(t)
β′(β−1(t))

b y.

More generally, one delivers that for a, b > 0,

α−1(x)β−1(y) = α−1

(
b

α(b)
α(b)

b
x

)
β−1

(
β(a)

a

a

β(a)
y

)

≤ β−1(t)
α′(α−1(t))

ab

α(b)
x +

α−1(t)
β′(β−1(t))

ab

β(a)
y.

This completes the proof.

A typical example of Hölder’s functions is the pre-Hölder’s function
α(x) = xp, p > 1. Indeed, we can notice that for any a, b > 0,

x1/py1/q ≤ ab1−p

p
x +

a1−qb

q
y,
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with 1
p + 1

q = 1. In this case, θ1 = 1
p , θ2 = 1

q are independent of a and b.

Now, we define the Lebesgue type function spaces Lα(X):

Lα(X) :={f : f is a measurable function on X satisfying ‖f‖Lα <∞} ,

where we set

‖f‖Lα := α−1

(∫

X
α(|f(x)|) dµ

)
.

We point out that the Layer cake representation can be read as

‖f‖Lα = α−1

(∫ ∞

0
α ′(t) λf (t) dt

)
,

where λf (t) := µ ({x : |f(x)| > t}).

2.2. Hölder’s and Minkowski’s inequalities on Lα(X)

First, we present a Hölder type inequality on the new space Lα(X).

Proposition 2.1 (Hölder’s inequality). Let α be a Hölder’s function
and β be the corresponding Hölder’s conjugate function. Then for any
f ∈ Lα(X) and any g ∈ Lβ(X), we have

∣∣∣∣
∫

X
f(x)g(x) dµ

∣∣∣∣ ≤ ‖f‖Lα‖g‖Lβ
.

Proof. The result is obvious if ‖f‖Lα = 0 or if ‖g‖Lβ
= 0. Otherwise,

substituting a := ‖g‖Lβ
and b := ‖f‖Lα , there exist θ1, θ2 such that

|f(x)g(x)| = α−1(α(|f(x)|))β−1(β(|g(x)|))

≤ θ1
ab

α(b)
α(|f(x)|) + θ2

ab

β(a)
β(|g(x)|).

Integration of both sides yields
∫

X
|f(x)g(x)| dµ ≤ θ1

ab

α(b)

∫

X
α(|f(x)|) dµ + θ2

ab

β(a)

∫

X
β(|g(x)|) dµ

= (θ1 + θ2)‖f‖Lα‖g‖Lβ

≤ ‖f‖Lα‖g‖Lβ
.

As a typical application of Hölder’s inequality, we also have Minkowski’s
inequality on Lα(X).



Lα(X) 479

Proposition 2.2 (Minkowski’s inequality). Let α be a Hölder’s func-
tion. Then for any f, g ∈ Lα(X), we have

‖f + g‖Lα ≤ ‖f‖Lα + ‖g‖Lα .

Proof. Without loss of generality, we may assume that f(x)+g(x) 6= 0
almost every x ∈ X by restricting the domain X if necessary. Hence we
have∫

X
α(|f(x) + g(x)|) dµ =

∫

X

α(|f(x) + g(x)|)
|f(x) + g(x)| |f(x) + g(x)| dµ

≤
∫

X

α(|f(x) + g(x)|)
|f(x) + g(x)| (|f(x)|+ |g(x)|) dµ.

Applying Hölder’s inequality, we obtain∫

X
α(|f(x) + g(x)|) dµ

≤ α−1

(∫

X
α(|f(x)|) dµ

)
β−1

(∫

X
β

(
α(|f(x) + g(x)|)
|f(x) + g(x)|

)
dµ

)

+ α−1

(∫

X
α(|g(x)|) dµ

)
β−1

(∫

X
β

(
α(|f(x) + g(x)|)
|f(x) + g(x)|

)
dµ

)

= (‖f‖Lα + ‖g‖Lα)β−1

(∫

X
β

(
α(|f(x) + g(x)|)
|f(x) + g(x)|

)
dµ

)

= (‖f‖Lα + ‖g‖Lα)β−1

(∫

X
α(|f(x) + g(x)|) dµ

)
.

The last equality follows from the identity (1). Therefore we have

α(‖f + g‖Lα)
β−1(α(‖f + g‖Lα))

≤ ‖f‖Lα + ‖g‖Lα .

By the identity (2), we conclude

‖f + g‖Lα ≤ ‖f‖Lα + ‖g‖Lα .

2.3. Completeness of Lα(X)

The functional ‖ · ‖Lα on Lα(X) may not produce a norm, since it
does not always satisfy the homogeneity required for norms. Instead, by
virtue of Minkowski’s inequality (Proposition 2.2), we define a metric
on Lα(X):

d(f, g) := ‖f − g‖Lα , for f, g ∈ Lα(X).
It produces a complete metric space on Lα(X):
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Theorem 2.3. The metric space Lα(X) is complete.

Proof. The proof is very similar to the classical Riesz-Fischer Theo-
rem.

The following proposition says that Lα(X) is a topological vector space
with inhomogeneous norm ‖ · ‖Lα .

Proposition 2.3. The scalar multiplication · : R × Lα(X) → R is
continuous. Furthermore, for k ≥ 0

dk−1e−1 ‖f‖Lα ≤ ‖k f‖Lα ≤ dke ‖f‖Lα ,

where dke is the ceiling of k, the smallest integer that is not less than k.

Proof. The monotonicity of α, α−1 and Minkowski’s inequality deliver

‖k f‖Lα ≤ ‖dke f‖Lα ≤ dke ‖f‖Lα .(9)

Hence fn → f in Lα(X) implies kfn → kf in Lα(X). In turn, it
leads ‖f‖Lα = ‖ 1

k k f‖Lα ≤ d 1
ke‖k f‖Lα , and so d 1

ke−1‖f‖Lα ≤ ‖k f‖Lα .
Now, it remains to check that kn → k and f ∈ Lα(X) imply that
knf → kf in Lα(X). Indeed, the inequality (9) implicitly shows the
sequence {α(|(kn−k)f |)} is dominated by a Lα-function α (2M |f |) with

M :=
⌈
max
n∈N

|kn|
⌉
, hence by Lebesgue dominated convergence theorem, we

have

lim
n→∞

∫

X
α(|(kn − k)f |)dµ =

∫

X
lim

n→∞α(|(kn − k)f(x)|)dµ = 0.

This gives the desired convergence.

Appendix: Proof of Theorem 2.3

Suppose that {fn} is a Cauchy sequence in Lα(X). Then there exists
a subsequence {fnk

} of {fn} such that d(fnk+1
, fnk

) ≤ 2−k, k = 1, 2, · · · .
Setting F with

F (x) = |fn1(x)|+
∞∑

k=1

|fnk+1
(x)− fnk

(x)|,

we can notice that |F (x)| < ∞ almost everywhere x ∈ X. In fact, from
the fact that

‖F‖Lα ≤ ‖fn1‖Lα +
∞∑

k=1

‖fnk+1
− fnk

‖Lα = ‖fn1‖Lα + 1 < ∞,
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there exists a null set N ⊂ X such that F (x) < ∞ for all x ∈ N{.
Therefore for any x ∈ N{, the absolute convergence of the series fn1(x)+∑∞

k=1[fnk+1
(x)−fnk

(x)] makes it possible to define f(x) := lim
k→∞

fnk
(x)

on N{. Since ‖f‖Lα ≤ ‖f − fnk
‖Lα + ‖fnk

‖Lα , we have f ∈ Lα. Also,
the following fact

‖f − fnk
‖Lα =

∥∥∥∥∥∥

∞∑

j=k+1

fnj+1 − fnj

∥∥∥∥∥∥
Lα

≤
∞∑

j=k+1

‖fnj+1 − fnj‖Lα = 2−k

yields the convergence of {fnk
} to f in Lα(X), which, in turn, implies

the convergence of the original Cauchy sequence {fn} in Lα(X).
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