• 제목/요약/키워드: $L^2$-harmonic p-form

검색결과 5건 처리시간 0.018초

L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

  • Chao, Xiaoli;Lv, Yusha
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.583-595
    • /
    • 2016
  • In the present note, we deal with $L^2$ harmonic 1-forms on complete submanifolds with weighted $Poincar{\acute{e}}$ inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^2$ harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and $Vit{\acute{o}}rio$.

FINITENESS AND VANISHING RESULTS ON HYPERSURFACES WITH FINITE INDEX IN ℝn+1: A REVISION

  • Van Duc, Nguyen
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.709-723
    • /
    • 2022
  • In this note, we revise some vanishing and finiteness results on hypersurfaces with finite index in ℝn+1. When the hypersurface is stable minimal, we show that there is no nontrivial L2p harmonic 1-form for some p. The our range of p is better than those in [7]. With the same range of p, we also give finiteness results on minimal hypersurfaces with finite index.

ON THE STRUCTURE OF MINIMAL SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD OF NON-NEGATIVE CURVATURE

  • Yun, Gab-Jin;Kim, Dong-Ho
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1213-1219
    • /
    • 2009
  • Let M$^n$ be a complete oriented non-compact minimally immersed submanifold in a complete Riemannian manifold N$^{n+p}$ of nonnegative curvature. We prove that if M is super-stable, then there are no non-trivial L$^2$ harmonic one forms on M. This is a generalization of the main result in [8].

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.