1 |
D. M. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255.
DOI
|
2 |
G. Carron, -Cohomologie et inegalites de Sobolev, Math. Ann. 314 (1999), no. 4, 613-639.
DOI
|
3 |
M. P. Cavalcante, H. Mirandola, and F. Vitorio, harmonic 1-form on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), no. 1, 205-222.
DOI
|
4 |
X. Cheng, harmonic forms and stability of hypersurfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 225-239.
DOI
|
5 |
N. T. Dung and K. Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann. Global Anal. Geom. 41 (2012), no. 4, 447-460.
DOI
|
6 |
N. T. Dung and K. Seo, Vanishing theorems for harmonic 1-forms on complete submanifolds in a Riemannian manifold, J. Math. Anal. Appl. 423 (2015), no. 2, 1594-1609.
DOI
|
7 |
N. T. Dung and C. J. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794.
DOI
|
8 |
H. P. Fu and Z. Q. Li, harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math. J. 32 (2009), no. 3, 432-441.
DOI
|
9 |
D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
|
10 |
J. J. Kim and G. Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature and harmonic forms, Arch. Math. (Basel) 100 (2013), no. 4, 369-380.
DOI
|
11 |
K. H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062.
DOI
|
12 |
P. F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1051-1061.
DOI
|
13 |
P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.
|
14 |
B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188.
DOI
|
15 |
P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534.
DOI
|
16 |
V. Matheus, Vanishing theorems for harmonic forms on complete Riemannian manifolds, arXiv: 1407.0236v1.
|
17 |
R. Miyaoka, harmonic 1-forms on a complete stable minimal hypersurface, Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
|
18 |
N. N. Sang and N. T. Thanh, Stability minimal hypersurfaces with weighted Poincare inequality in a Riemannian manifold, Commun. Korean. Math. Soc. 29 (2014), no. 1, 123-130.
DOI
|
19 |
K. Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch. Math. (Basel) 94 (2010), no. 2, 173-181.
DOI
|
20 |
K. Seo, harmonic 1-forms on minimal submanifolds in hyperbolic space, J. Math. Anal. Appl. 371 (2010), no. 2, 546-551.
DOI
|
21 |
K. Shiohama and H. Xu, The topological sphere theorem for complete submanifolds, Compos. Math. 107 (1997), no. 2, 221-232.
DOI
|
22 |
S. Tanno, harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan. 48 (1996), no. 4, 761-768.
DOI
|
23 |
S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670.
DOI
|
24 |
G. Yun, Total scalar curvature and harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135-141.
|