• 제목/요약/키워드: $L^{2}$ norm error

검색결과 48건 처리시간 0.039초

QUADRATURE ERROR OF THE LOAD VECTOR IN THE FINITE ELEMENT METHOD

  • Kim, Chang-Geun
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.735-748
    • /
    • 1998
  • We analyze the error in the p version of the of the finite element method when the effect of the quadrature error is taken in the load vector. We briefly study some results on the $H^{1}$ norm error and present some new results for the error in the $L^{2}$ norm. We inves-tigate the quadrature error due to the numerical integration of the right hand side We present theoretical and computational examples showing the sharpness of our results.

ON EXACT CONVERGENCE RATE OF STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

  • Nam, Dou-Gu
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.125-130
    • /
    • 2007
  • We propose a simple and intuitive method to derive the exact convergence rate of global $L_{2}-norm$ error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and $M{\"u}ller-Gronbach\;(2004)$. We conclude that any strong numerical scheme of order ${\gamma}\;>\;1/2$ has the same optimal convergence rate for this error. The method clearly reveals the structure of global $L_{2}-norm$ error and is similarly applicable for evaluating the convergence rate of global uniform approximations.

오차해석에 의한 해양방사경계조건 비교 (Comparison of Radiating Ocean Boundary Conditions by Error Analysis)

  • 서승원;윤태훈
    • 물과 미래
    • /
    • 제22권3호
    • /
    • pp.315-322
    • /
    • 1989
  • 해양수치모형에 적용되는 상이한 방사조건을 포함한 개방경계조건의 영향이 $L^{2_}$-norm과 RMS오차해석에 의하여 비교되었다. 수치실험에서는 M2조석, 격자망의 영향, 해저마찰의 영향 등이 각각 고려되었다. 연구결과 개선방사조건이 고려될 때 단순한 구형만에서 해석해와 비교된 $M_2$조석의 경우는 방사조건이 고려되지 않을때보다 $L^{2_}$-norm에 의하면 40%, RMS오차에 의하면 96%나 신뢰성이 향상되었다. 이는 반격자를 이용할 때 보다도 더욱 만족스러운 결과인 것으로 나타났다. 해저마찰이 고려된 경우도 개선방사조건의 도입이 필요한 것으로 판단되었다.

  • PDF

ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS

  • OHM, MI RAY;LEE, HYUN YOUNG;SHIN, JUN YONG
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.685-693
    • /
    • 2015
  • In this paper, we introduce fully discrete mixed discontinuous Galerkin approximations for parabolic problems. And we analyze the error estimates in $l^{\infty}(L^2)$ norm for the primary variable and the error estimates in the energy norm for the primary variable and the flux variable.

OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.545-565
    • /
    • 2014
  • In this paper we derive a priori $L^{\infty}(L^2)$ error estimates for expanded mixed finite element formulations of semilinear Sobolev equations. This formulation expands the standard mixed formulation in the sense that three variables, the scalar unknown, the gradient and the flux are explicitly treated. Based on this method we construct finite element semidiscrete approximations and fully discrete approximations of the semilinear Sobolev equations. We prove the existence of semidiscrete approximations of u, $-{\nabla}u$ and $-{\nabla}u-{\nabla}u_t$ and obtain the optimal order error estimates in the $L^{\infty}(L^2)$ norm. And also we construct the fully discrete approximations and analyze the optimal convergence of the approximations in ${\ell}^{\infty}(L^2)$ norm. Finally we also provide the computational results.

$L^{\infty}$-CONVERGENCE OF MIXED FINITE ELEMENT METHOD FOR LAPLACIAN OPERATOR

  • Chen, Huan-Zhen;Jiang, Zi-Wen
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.61-82
    • /
    • 2000
  • In this paper two so-called regularized Green's functions are introduced to derive the optimal maximum norm error estimates for the unknown function and the adjoint vector-valued function for mixed finite element methods of Laplacian operator. One contribution of the paper is a demonstration of how the boundedness of $L^1$-norm estimate for the second Green's function ${\lambda}_2$ and the optimal maximum norm error estimate for the adjoint vector-valued function are proved. These results are seemed to be to be new in the literature of the mixed finite element methods.

SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES OF VARIATIONAL DISCRETIZATION FOR ELLIPTIC CONTROL PROBLEMS

  • Hua, Yuchun;Tang, Yuelong
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.707-719
    • /
    • 2014
  • In this paper, we investigate a variational discretization approximation of elliptic optimal control problems with control constraints. The state and the co-state are approximated by piecewise linear functions, while the control is not directly discretized. By using some proper intermediate variables, we derive a second-order convergence in $L^2$-norm and superconvergence between the numerical solution and elliptic projection of the exact solution in $H^1$-norm or the gradient of the exact solution and recovery gradient in $L^2$-norm. Then we construct a posteriori error estimates by using the superconvergence results and do some numerical experiments to confirm our theoretical results.

로버스트추정에 의한 지구물리자료의 역산 (Inversion of Geophysical Data with Robust Estimation)

  • 김희준
    • 자원환경지질
    • /
    • 제28권4호
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • 제34권2호
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

Feedback-Based Iterative Learning Control for MIMO LTI Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.269-277
    • /
    • 2008
  • This paper proposes a necessary and sufficient condition of convergence in the $L_2$-norm sense for a feedback-based iterative learning control (ILC) system including a multi-input multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence conditions for a nominal plant and an uncertain plant are equal to the nominal performance condition and the robust performance condition in the feedback control theory, respectively. Moreover, no additional effort is required to design an iterative learning controller because the performance weighting matrix is used as an iterative learning controller. By proving that the least upper bound of the $L_2$-norm of the remaining tracking error is less than that of the initial tracking error, this paper shows that the iterative learning controller combined with the feedback controller is more effective to reduce the tracking error than only the feedback controller. The validity of the proposed method is verified through computer simulations.