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SUPERCONVERGENCE AND A POSTERIORI ERROR

ESTIMATES OF VARIATIONAL DISCRETIZATION FOR

ELLIPTIC CONTROL PROBLEMS†

YUCHUN HUA AND YUELONG TANG∗

Abstract. In this paper, we investigate a variational discretization ap-
proximation of elliptic optimal control problems with control constraints.
The state and the co-state are approximated by piecewise linear functions,

while the control is not directly discretized. By using some proper inter-
mediate variables, we derive a second-order convergence in L2-norm and
superconvergence between the numerical solution and elliptic projection of
the exact solution in H1-norm or the gradient of the exact solution and re-

covery gradient in L2-norm. Then we construct a posteriori error estimates
by using the superconvergence results and do some numerical experiments
to confirm our theoretical results.
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1. Introduction

Optimal control problems have been extensively used in many aspects of
the modern life such as social, economic, scientific and engineering numerical
simulation. Finite element approximation seems to be the most widely used
method in computing optimal control problems. A systematic introduction of
finite element method for PDEs and optimal control problems can be found in
[14, 17, 18, 23, 26].
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For a constrained optimal control problem, the control has lower regularity
than the state and the co-state. So most researchers considered using piece-
wise linear functions to approximate the state and the co-state and using piece-
wise constant functions to approximate the control. They constructed a projec-
tion gradient algorithm in which the control is first-order convergent (see e.g.,
[16, 20]). Recently, Borz̀ı considered a second-order discretization and multi-
grid solution of constrained nonlinear elliptic control problems in [4], Hinze in-
troduced a variational discretization concept for optimal control problems and
derived a second-order convergence for the control in [11, 12].

There has been extensive research on the superconvergence of finite element
methods for optimal control problems in the literature, most of which focused
upon elliptic control problems. Superconvergence properties of linear and semi-
linear elliptic control problems are established in [24] and [6], respectively. Super-
convergence of finite element approximation for bilinear elliptic optimal control
problems is studied in [32]. Recently, superconvergence of fully discrete finite
element and variational discretization approximation for linear and semilinear
parabolic control problems are derived in [27, 28, 29].

The literature on a posteriori error estimation of finite element method is
huge. Some internationally known works can be found in [1, 2, 3, 5]. Concerning
finite element methods of elliptic optimal control problems, a posteriori error
estimates of residual type are investigated in [10, 21, 33, 34], a posteriori error
estimates of recovery type are derived in [16, 20, 31]. Some error estimates and
superconvergence results have been established in [6, 7, 36], and some adaptive
finite element methods can be found in [3, 13, 15, 35]. For parabolic optimal
control problems, residual type a posteriori error estimates of finite element
methods are investigated in [22, 30] and an adaptive space-time finite element
method is investigated in [25].

The purpose of this paper is to consider the superconvergence and recovery
type a posteriori error estimates of variational discretization for elliptic optimal
control problems with pointwise control constraints.

We are interested in the following quadratic optimal control problem:
min
u∈K

{
1

2
∥y − yd∥2 +

α

2
∥u− ud∥2

}
,

− div(A∇y) = f +Bu, inΩ,

y = 0, on ∂Ω,

(1)

where Ω is a bounded domain in R2 with a Lipschitz boundary ∂Ω, the coefficient
A = (aij(x))2×2 ∈ (W 1,∞(Ω̄))2×2, such that (A(x)ξ) · ξ ≥ c | ξ |2, ∀ ξ ∈ R2, B is
a linear continuous operator, yd, ud, f ∈ L2(Ω), and K is defined by

K =
{
v ∈ L2(Ω) : a ≤ v ≤ b, a.e. inΩ

}
,

where a and b are constants.
In this paper, we adopt the standard notation Wm,q(Ω) for Sobolev spaces

on Ω with norm ∥ · ∥Wm,q(Ω) and seminorm | · |Wm,q(Ω). We set H1
0 (Ω) ≡
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v ∈ H1(Ω) : v|∂Ω = 0

}
and denote Wm,2(Ω) by Hm(Ω). In addition, c or

C denotes a generic positive constant.
The outline of this paper is as follows. In Section 2, we introduce a variational

discretization approximation for the model problem. In Section 3, we derive the
convergence. In Section 4, we obtain the superconvergence and a posteriori error
estimates. We present some numerical examples to demonstrate our theoretical
results in the last section.

2. variational discretization approximation for the model problem

We now consider a variational discretization approximation for the model
problem (1). For ease of exposition, we set W = H1

0 (Ω), U = L2(Ω), ∥ · ∥ =
∥ · ∥L2(Ω), ∥ · ∥m = ∥ · ∥Hm(Ω) and

a(y, w) =

∫
Ω

(A∇y) · ∇w, ∀ y, w ∈ W,

(u,w) =

∫
Ω

u · w, ∀u,w ∈ U.

It follows from the assumption on A that

a(y, y) ≥ c∥y∥21, |a(y, w)| ≤ C∥y∥1,Ω∥w∥1, ∀ y, w ∈ W.

Then the model problem (1) can be restated as: min
u∈K

{
1

2
∥y − yd∥2 +

α

2
∥u− ud∥2

}
,

a(y, w) = (f +Bu,w), ∀w ∈ W.

(2)

It is well known (see e.g., [17]) that the control problem (2) has a unique solution
(y, u) ∈ W ×K, and a pair (y, u) ∈ W ×K is the solution of (2) if and only if
there is a co-state p ∈ W such that the triplet (y, p, u) ∈ W ×W ×K satisfies
the following optimality conditions:

a(y, w) = (f +Bu,w), ∀w ∈ W, (3)

a(q, p) = (yd − y, q), ∀ q ∈ W, (4)

(αu− αud −B∗p, v − u) ≥ 0, ∀ v ∈ K, (5)

where B∗ is the adjoint operator of B.
We introduce the following pointwise projection operator:

Π[a,b](g(x)) = max(a,min(b, g(x))).

It is clear that Π[a,b](·) is Lipschitz continuous with constant 1. As in [8], it is
easy to prove the following lemma:

Lemma 2.1. Let (y, p, u) be the solution of (3)-(5). Then

u = Π[a,b]

(
ud +

1

α
B∗p

)
. (6)
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Remark 2.1. We should point out that (5) and (6) are equivalent. This theory
can be used to another situation, for example, K is characterized by a bound on
the integral on u over Ω, namely,

∫
Ω
u(x)dx ≥ 0, we have similar results.

Let T h be a regular triangulation of Ω, such that Ω̄ = ∪τ∈T h τ̄ . Let h =
maxτ∈T h{hτ}, where hτ denotes the diameter of the element τ . Associated with
T h is a finite dimensional subspace Sh of C(Ω̄), such that χ|τ are polynomials
of m-order(m = 1) for all χ ∈ Sh and τ ∈ T h. Let Wh = {vh ∈ Sh : vh|∂Ω = 0}.
It is easy to see that Wh ⊂ W . Then a possible variational discretization ap-
proximation scheme of (2) is as follows: min

uh∈K

{
1

2
∥yh − yd∥2 +

α

2
∥uh − ud∥2

}
,

a(yh, wh) = (f +Buh, wh), ∀wh ∈ Wh.

(7)

It is well known (see e.g., [21]) that the control problem (7) has a unique solution
(yh, uh) ∈ Wh × K, and that if the pair (yh, uh) ∈ Wh × K is the solution of
(7), if and only if there is a co-state ph ∈ Wh such that the triplet (yh, ph, uh) ∈
Wh ×Wh ×K satisfies the following optimality conditions:

a(yh, wh) = (f +Buh, wh), ∀wh ∈ Wh, (8)

a(qh, ph) = (yd − yh, qh), ∀ qh ∈ Wh, (9)

(αuh − αud −B∗ph, v − uh) ≥ 0, ∀ v ∈ K. (10)

Similar to Lemma 2.1, it is easy to show the following lemma:

Lemma 2.2. Suppose (yh, ph, uh) be the solution of (8)-(10). Then , we have

uh = Π[a,b]

(
ud +

1

α
B∗ph

)
. (11)

Remark 2.2. According to (11), we can replace uh by max(a,min(b, ud +
1
αB

∗ph) in our program. Thus the control need not be discretized directly.

3. Convergence analysis

We first introduce the following intermediate variables. For any uh ∈ K, let
(y(uh), p(uh)) ∈ W ×W satisfies the following system:

a(y(uh), w) = (f +Buh, w), ∀w ∈ W, (12)

a(q, p(uh)) = (yd − y(uh), q), ∀ q ∈ W. (13)

The following lemmas are very important in deriving the convergence.

Lemma 3.1 ([9]). Let πh be the standard Lagrange interpolation operator. For
m = 0 or 1, q > n

2 and ∀ v ∈ W 2,q(Ω), we have

|v − πhv|Wm,q(Ω) ≤ Ch2−m|v|W 2,q(Ω). (14)
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Lemma 3.2. Let (yh, ph, uh) and (y(uh), p(uh)) be the solutions of (8)-(10) and
(12)-(13), respectively. Assume that p(uh), y(uh) ∈ H2(Ω). Then there exists a
constant C independent of h such that

∥y(uh)− yh∥1 + ∥p(uh)− ph∥1 ≤ Ch. (15)

Proof. From (9), (13)-(14) and Young’s inequality, we have

c∥p(uh)− ph∥21
≤a(p(uh)− ph, p(uh)− ph)

=a(p(uh)− πhp(uh), p(uh)− ph) + (yh − y(uh), πhp(uh)− ph)

≤C∥p(uh)− ph∥1∥p(uh)− πhp(uh)∥1 + C∥yh − y(uh)∥∥πhp(uh)− ph∥
≤C(δ)∥p(uh)− πhp(uh)∥21 + C(δ)∥y(uh)− yh∥2 + Cδ∥p(uh)− ph∥21,Ω
≤C(δ)h2∥p(uh)∥22 + C(δ)∥y(uh)− yh∥2 + Cδ∥p(uh)− ph∥21.

(16)

Let δ be small enough, we obtain

∥p(uh)− ph∥1 ≤ Ch+ C∥y(uh)− yh∥. (17)

Similarly, we can prove that

∥y(uh)− yh∥1 ≤ Ch∥y(uh)∥2 ≤ Ch. (18)

Then (15) follows from (16)-(18). �

We introduce the following auxiliary problems:

−div(A∗∇ξ) =F1, inΩ,

ξ|∂Ω =0,
(19)

−div(A∇ζ) =F2, inΩ,

ζ|∂Ω =0.
(20)

From the regularity estimates (see e.g., [9]), we obtain

∥ξ∥2 ≤ C∥F1∥, ∥ζ∥2 ≤ C∥F2∥.

Lemma 3.3. Let (yh, ph, uh) be the solution of (8)-(10). Suppose that y(uh), p(uh) ∈
H2(Ω). Then there exists a constant C independent of h such that

∥y(uh)− yh∥+ ∥p(uh)− ph∥ ≤ Ch2. (21)

Proof. Let F1 = y(uh) − yh in (19) and ξh = πhξ. From (8), (12) and (15), we
have

∥y(uh)− yh∥2 =a(y(uh)− yh, ξ)

=a(y(uh)− yh, ξ − ξh)

≤C∥y(uh)− yh∥1∥ξ − ξh∥1.
(22)

Note that

∥ξ − ξh∥1 ≤ Ch∥ξ∥2 ≤ Ch∥y(uh)− yh∥. (23)
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Thus,

∥y(uh)− yh∥ ≤ Ch∥y(uh)− yh∥1,Ω ≤ Ch2. (24)

Similarly, let F2 = p(uh) − ph in (20) and ζh = πhζ. From (9), (13) and (15),
we obtain

∥p(uh)− ph∥ ≤ Ch2. (25)

From (24) and (25), we get (21). �

Lemma 3.4. Let (y, p, u) and (yh, ph, uh) be the solutions of (3)-(5) and (8)-
(10), respectively. Assume that all the conditions in Lemma 3.3 are valid. Then
there exists a constant C independent of h such that

∥u− uh∥ ≤ Ch2. (26)

Proof. By selecting v = uh and v = u in (5) and (10), respectively. From (3)-(4)
and (12)-(13), we have

α∥u− uh∥2 ≤(B∗p−B∗ph, u− uh)

=(B∗p−B∗p(uh), u− uh) + (B∗p(uh)−B∗ph, u− uh)

=− ∥y − y(uh)∥2 + (B∗p(uh)−B∗ph, u− uh)

≤C∥p(uh)− ph∥∥u− uh∥.

(27)

From (21) and (27), we derive (26). �

Now we combine lemmas 3.2-3.4 to come up with the following main result.

Theorem 3.5. Let (y, p, u) and (yh, ph, uh) be the solutions of (3)-(5) and (8)-
(10), respectively. Assume that all the conditions in lemmas 3.2-3.4 are valid.
Then we have

∥u− uh∥+ ∥y − yh∥+ ∥p− ph∥ ≤ Ch2. (28)

4. Superconvergence and a posteriori error estimates

We now derive the superconvergence and a posteriori error estimates for the
variational discretization approximation. To begin with, let us introduce the
elliptic projection operator Ph : W → Wh, which satisfies: for any ϕ ∈ W

a(ϕ− Phϕ,wh) = 0, ∀wh ∈ Wh.

It has the following approximation properties:

∥ϕ− Phϕ∥ ≤ Ch2∥ϕ∥2, ∀ϕ ∈ H2(Ω). (29)

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (3)-(5) and (8)-
(10), respectively. Assume that all the conditions in Theorem 3.5 are valid. Then
we have

∥Phy − yh∥1 + ∥Php− ph∥1 ≤ Ch2. (30)
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Proof. From (3)-(8), we have the following error equation:

a(y − yh, wh) = (Bu−Buh, wh), ∀wh ∈ Wh. (31)

By using the definition of Ph and choosing wh = Phy − yh, we have

a(Phy − yh, Phy − yh) = (Bu−Buh, Phy − yh). (32)

Let us note that B is linear continuous operator. From (26), (29) and Holder
inequality, we get

∥Phy − yh∥1 ≤ Ch2. (33)

Similarly, we can derive

∥Php− ph∥1 ≤ Ch2. (34)

Thus, (30) follows from (33) and (34). �

In the second, let us recall recovery operators Rh and Gh, respectively. Let
Rhv be a continuous piecewise linear function (without zero boundary con-
straint). Similar to the Z-Z patch recovery in [37, 38], the value of Rhv on the
nodes are defined by least-squares argument on an element patches surrounding
the nodes. The gradient recovery operator Ghv = (Rhvx1 , Rhvx2), where Rh is
the recovery operator defined above for the recovery of the control. The details
can be found in [16].

Theorem 4.2. Let (y, p, u) and (yh, ph, uh) be the solutions of (3)-(5) and (8)-
(10), respectively. Suppose that all the conditions in Theorem 4.1 are valid and
y, p ∈ H3(Ω). Then

∥Ghyh −∇y∥+ ∥Ghph −∇p∥ ≤ Ch2. (35)

Proof. Let yI be the piecewise linear Lagrange interpolation of y. According to
Theorem 2.1.1 in [19], we have

∥Phy − yI∥1 ≤ Ch2∥y∥3. (36)

From the standard interpolation error estimate technique (see, e.g., [9]) that

∥GhyI −∇y∥ ≤ Ch2|y|3. (37)

By using (36)-(37), we get

∥Ghyh −∇y∥ = ∥Ghyh −GhPhy∥+ ∥GhPhy −GhyI∥+ ∥GhyI −∇y∥
≤C ∥yh − Phy∥1 + C ∥Phy − yI∥1 + ∥GhyI −∇y∥
≤C ∥yh − Phy∥1 + Ch2∥y∥3.

(38)

Therefore,

∥Ghyh −∇y∥2 ≤ C∥yh − Phy∥21 + Ch4∥y∥23. (39)

From Theorem 4.1 and (39), we derive

∥Ghyh −∇y∥ ≤ Ch2. (40)
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Similarly, we can prove that

∥Ghph −∇p∥ ≤ Ch2. (41)

Then (36) follows from (40)-(41). �
By using the superconvergence results above, we obtain the following a pos-

teriori error estimates of variational discretization approximation for the elliptic
optimal control problems.

Theorem 4.3. Assume that all the conditions in Theorem 4.1 and Theorem 4.2
are valid. Then

η1 := ∥Ghyh −∇yh∥ = ∥∇(y − yh)∥+O(h2), (42)

η2 := ∥Ghph −∇ph∥ = ∥∇(p− ph)∥+O(h2). (43)

Proof. From Theorem 4.1 and Theorem 4.2, it is easy to obtain the above results.
�

5. Numerical experiments

In this section, we present some numerical examples which is solved numer-
ically with codes developed based on AFEPack. The package provide a freely
available tool of finite element approximation for PDEs and the details can be
found in [15].

We solve the following optimal control problems:
min

u(x)∈K

{
1

2
∥y(x)− yd(x)∥+

α

2
∥u(x)− ud(x)∥

}
,

− div(A(x)∇y(x)) = f(x) +Bu(x), x ∈ Ω,

y(x) = 0, x ∈ ∂Ω,

where
K =

{
v(x) ∈ L2(Ω) : a ≤ v(x) ≤ b

}
,

and the domain Ω is the unit square [0, 1] × [0, 1] and B = I is the identity
operator and E is the 2× 2 identity matrix.

Example 1. The data are as follows:

α = 1, a = 0, b = 1, A(x) = E,

p(x) = −x1x2(1− x1)(1− x2),

y(x) = p(x),

ud(x) = 1− sin(πx1/2)− sin(πx2/2),

u(x) = max(0,min(1, ud(x) + p(x))),

f(x) = −div(A(x)∇y(x))− u(x),

yd(x) = y(x)− div(A∗(x)∇p(x)).

The numerical results are listed in Table 1. In Figure 1, we show the profiles
of the exact solution u alongside the solution error.
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Table 1. Numerical results, Example 1.

Mesh ∥u− uh∥ ∥y − yh∥ ∥p− ph∥
16× 16 2.14058e-04 6.06285e-04 6.33941e-04
32× 32 5.39805e-05 1.52186e-04 1.59139e-04
64× 64 1.34857e-05 3.81582e-05 3.98295e-05
128× 128 3.36858e-06 9.61916e-06 9.96385e-06
256× 256 8.42796e-07 2.48396e-06 2.49504e-06
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Figure 1. The exact solution u (top) and the error uh − u
(bottom), Example 1.

The results in Table 1 indicate that ∥u−uh∥ = O(h2), ∥y− yh∥ = O(h2) and
∥p − ph∥ = O(h2). It is consistent with our theoretical result obtained in the
Theorem 3.5.

Example 2. The data are as follows:

α = 1, a = −0.5, b = 0,

A(x) =

{
E, x1 + x2 ≥ 1,
2E, x1 + x2 < 1,
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p(x) =

{
−2sin(πx1)sin(πx2), x1 + x2 ≥ 1
−sin(πx1)sin(πx2), x1 + x2 < 1,

y(x) = p(x), ud(x) = 0,

u(x) = max(−0.5,min(0, ud(x) + p(x))),

f(x) = −div(A(x)∇y(x))− u(x),

yd(x) = y(x)− div(A∗(x)∇p(x)).

The numerical results based on adaptive mesh and uniform mesh are presented
in Table 2. In Figure 2, we show the profiles of the exact solution u alongside the
solution error. From Table 2, it is clear that the adaptive mesh generated via
the error indicators in Theorem 4.3 are able to save substantial computational
work, in comparison with the uniform mesh. Our numerical results confirm our
theoretical results.

Table 2. Numerical results, Example 2.

Mesh Nodes Sides Elements Dofs ∥u− uh∥
Uniform mesh 513 1456 944 513 6.19419e-02
Adaptive mesh 145 392 248 145 6.04841e-02
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