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OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED

FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV

EQUATIONS

Mi Ray Ohm, Hyun Young Lee, and Jun Yong Shin

Abstract. In this paper we derive a priori L∞(L2) error estimates for
expanded mixed finite element formulations of semilinear Sobolev equa-
tions. This formulation expands the standard mixed formulation in the
sense that three variables, the scalar unknown, the gradient and the flux
are explicitly treated. Based on this method we construct finite ele-
ment semidiscrete approximations and fully discrete approximations of
the semilinear Sobolev equations. We prove the existence of semidiscrete
approximations of u, −∇u and −∇u−∇ut and obtain the optimal order
error estimates in the L∞(L2) norm. And also we construct the fully
discrete approximations and analyze the optimal convergence of the ap-
proximations in ℓ∞(L2) norm. Finally we also provide the computational
results.

1. Introduction

Let Ω be an open bounded convex domain in Rd, 1 ≤ d ≤ 3 with a boundary
∂Ω and let 0 < T < ∞ be given. In this paper we consider the following
semilinear Sobolev equation:

ut −∇ · (∇u+∇ut) = f(x, t, u), in Ω× (0, T ],

(∇u+∇ut) · n = 0, on ∂Ω× (0, T ],(1.1)

u(x, 0) = u0(x), on Ω,

where n denotes the outward normal vector to ∂Ω and u0(x) and f(x, t, u) are
given functions assumed to be sufficiently smooth so that (1.1) has a unique
sufficiently smooth solution. The problem (1.1) represents natural phenomena
appearing in the research of the flow of fluids through fissured materials [4],
thermodynamics [6] and other areas. For details about the physical significance
and the existence and uniqueness of the solutions of the Sobolev equations, see
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[4, 5, 6, 12, 16, 28]. In the references [4, 5, 6, 12, 16, 28], we also find that the
study of the properties of the equations (1.1) contributes to the development
of the mathematical theories for the inverse problem of the heat equations.

In the past, several mathematicians [2, 3, 15, 17, 19, 20, 21, 26, 27] applied
the classical Galerkin finite element method or discontinuous Galerkin method
to construct the approximations of the scalar unknown u(x, t) of the Sobolev
equations combined with the various types of boundary conditions with 1 ≤
d ≤ 3.

Compared with the classical Galerkin finite element method, the advantage
of mixed finite element formulations is that one can simultaneously approximate
both the displacement and the stress or the pressure and the flux. Another
advantage of this procedure is that the flux or the stress can be approximated
to the same order of convergence as the unknown scalar u(x, t) itself. Recently
due to these advantages, the authors [23, 25] have applied the mixed finite
element method (MFEM) to some types of the Sobolev equations, construct
the numerical solutions of u and the flux term and proved the optimal order
of convergence. By implementing the standard mixed finite element method
we may approximate simultaneously the unknown u(x) and the flux term of
the form a(x)u(x)[13, 14]. However in the case that a(x) is small which may
occur in many circumstances, a(x) is not readily to be inverted to compute
∇u. Motivated by this, Wheeler et al [29] and Arbogast et al [1] proposed an
expanded mixed finite element method.

EMFEM expands the classical MFEM in the sense that the scalar unknown,
the gradient and the flux are separately treated, so that three variables can be
approximated directly. Chen [7] also Independently developed expanded mixed
method based on BDM method for elliptic problem. Chen [8, 9] analyzed the
error analysis of the expanded mixed method for second-order elliptic problems.
Adopting this method Woodward and Dawson [30] approximate the solution of
Richards’ equation. In the several literatures such as [10, 11, 18], the authors
tried to apply an EMFEM to approximate the three variables corresponding
to elliptic equations and semilinear reaction-diffusion equations.

Furthermore, in the case that the flux term contains the mixed derivative
with respect to the spatial variable and temporal variable such as the prob-
lem (1.1), the classical MFEM is not useful to approximate the gradient from
the flux. In this paper, we apply an expanded mixed finite element method
(EMFEM) and construct semidiscrete approximations and fully discrete ap-
proximations of u, −∇u and −∇u−∇ut, respectively.

To approximate ∇u and ∇u + ∇ut, instead of computing the derivatives
of uh, we construct the approximations of ∇u and ∇u + ∇ut directly, to ob-
tain the optimal convergence results for ∇u and ∇u +∇ut. Compared to the
standard mixed finite element method, our expanded mixed method does not
require the LBB condition. The LBB condition is needed in the process of
constructing finite element spaces, so that it confines the construction of finite
element spaces. As far as we know, this paper will be the first trial to estimate
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both semidiscrete and fully discrete approximations using an expanded mixed
finite element methods for the Sobolev equations and obtain the optimal L2

error estimates. This paper is organized as follows. In Section 2, we introduce
some notations and preliminaries. Next we construct finite element spaces and
we construct the weak formulation of (1.1). Then in Section 3, we introduce
our expanded mixed formulation, construct semidiscrete approximations and
prove the existence of semidiscrete approximations. The results of the optimal
error estimates of ∇u and ∇u+∇ut as well as u in L∞(L2(Ω)) normed space
are derived. In Section 4, we formulate the expanded fully discrete finite ele-
ment approximations and analyze the optimal error estimates in ℓ∞(L2) norm.
Finally in Section 5, we provide the computational results to support our theo-
retical analysis suggested in Section 4. Throughout this paper, the vectors will
be denoted by the bold face.

2. Finite element spaces

For an s ≥ 0, 1 ≤ p ≤ ∞ and Ω, we denote by W s,p(Ω) the Sobolev
space equipped with the usual Sobolev norm ‖u‖ps,p =

∑
|k|≤s

∫
Ω |Dku|pdx

where k = (k1, k2, . . . , kd), |k| = k1 + k2 + · · · + kd, D
ku = ∂|k|u

∂x
k1
1

∂x
k2
2

···∂x
kd
d

,

and ki is a nonnegative integer for each 1 ≤ i ≤ d. For simplicity we denote
W s,2(Ω) by Hs(Ω). Let Hs(Ω) = {(u1, u2, . . . , ud)|ui ∈ Hs(Ω), 1 ≤ i ≤ d}. If

u = (u1, u2, . . . , ud) ∈H
s(Ω), then ‖u‖2s =

∑d
i=1 ‖ui‖

2
s. And also we skip 0 in

the notation of the Sobolev norm ‖ · ‖0, so we simply write ‖ · ‖. If for each
t ∈ [0, T ], u(x, t) belongs to a Sobolev spaceX equipped with a norm ‖·‖X , then

we define for p ∈ [1,∞), ‖u(x, t)‖p
Lp(0,t0:X) =

∫ t0

0
‖u(x, t)‖pXdt and for p = ∞,

‖u(x, t)‖L∞(0,t0:X) = ess sup0≤t≤t0
‖u(x, t)‖X . If t0 = T , then we simply write

Lp(X) and L∞(X) instead of Lp(0, T : X) and L∞(0, T : X) respectively. And
also (f, g) denotes the usual inner product given by (f, g) =

∫
Ω fgdx.

We denote V = L2(Ω), Λ = (L2(Ω))d and W = {w ∈ H(div : Ω) |w · n =
0 on ∂Ω} where H(div : Ω) = {w ∈ (L2(Ω))d | ∇ · w ∈ L2(Ω)}. Let
Eh = {E1, E2, . . . , ENh

} be a regular quasi-uniform subdivision of Ω where
Ei is a triangle or a quadrilateral if d = 2 and Ei is a 3-simplex or 3-rectangle
if d = 3. Boundary triangles or rectangles (3-simplex or 3-rectangle) are al-
lowed to have a curvilinear edge (a curved surface). Let hi = diam(Ei) be the
diameter of Ei and h = max{hi | 1 ≤ i ≤ Nh}. We assume that there exists
a constant δ > 0 such that each Ei contains a ball of radius δhi. The quasi-
uniformity requirement is that there is a constant τ > 0 such that h/hi ≤ τ ,
i = 1, 2, . . . , Nh.

We denote by Λh × Vh = Λ(Ω, Eh, k) × V (Ω, Eh, k) the Raviart-Thomas-
Nedelec space associated with Eh. Let E ∈ Eh and let Pk(E) denote the re-
striction of the polynomials of total degree ≤ k to the set E. Similarly we let
Qk(E) indicate the space of the restrictions of the polynomials of degree ≤ k
with respect to each one of the d variables x1, x2, . . . , xd to E. If E ∈ Eh is a
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triangle, we let

Vh(E) = Pk(E), Λh(E) =Wh(E) = (Pk(E))2 ⊕ (x1, x2)
TPk(E).

Similarly, if E is a rectangle, we let Vh(E) = Qk(E),

Λh(E) =Wh(E) = {µ ∈
(
Qk+1(E)

)2
:
∂µ

k+1

i

∂x
k+1

j

= 0, j 6= i, 1 ≤ i, j ≤ 2}.

If E is a rectangular, then the above finite element space coincides with that
of Raviart and Thomas [24]. If E is a triangle, then it is the modification due
to Nedelec [22]. With the obvious modification, we define

Λh(E) =Wh(E) =
(
Pk(E)

)3
⊕ (x1, x2, x3)

TPk(E),

Λh(E) =Wh(E) =
{
µ ∈

(
Qk+1(E)

)3
|
∂µk+1

i

∂xk+1
j

= 0, j 6= i, 1 ≤ i, j ≤ 3
}
,

for T being a 3-simplex or a parallelogram in R
3.

Let Vh ⊂ V , Λh ⊂ Λ and Wh ⊂ W be the finite element spaces such that

Vh = {v ∈ V | v|E ∈ Vh(E), ∀E ∈ Eh},

Λh = {µ ∈ Λ | µ|E ∈ Λh(E), ∀E ∈ Eh},

Wh = {w ∈W | w|E ∈Wh(E), ∀E ∈ Eh}.

From now on, we concentrate the case that E is a triangle or a 3-simplex,
and analyze the approximation results for this case only. Following the similar
process, we may obtain the corresponding results for the case that E is a
rectangle or parallelogram.

To introduce an expanded mixed formulation, we let λ = −∇u, σ = −(∇u+
∇ut) = λ + λt. Thus the weak form of (1.1) that we shall treat is given by
seeking a triple (u,λ,σ) ∈ V ×Λ×W such that

(λ,w)− (u,∇ ·w) = 0, ∀w ∈W ,(2.1)

(λ,µ) + (λt,µ)− (σ,µ) = 0, ∀µ ∈ Λ,(2.2)

(ut, v) + (∇ · σ, v) = (f(u), v), ∀ v ∈ V.(2.3)

3. Optimal L2 error estimates of the expanded semidiscrete
approximations of u, λ and σ

In this section by applying an expanded mixed method we will construct the
semidiscrete approximations of u, −∇u and −∇u−∇ut, prove their existence
and analyze the L2 error estimates of semidiscrete approximations of u, λ and
σ.

Raviart and Thomas [24] defined a projection Πh×Ph :W ×V →Wh×Vh

satisfying the properties:

(∇ ·w −∇ ·Πhw, v) = 0, ∀ v ∈ Vh,(3.1)

(v − Phv, χ) = 0, ∀χ ∈ Vh.(3.2)
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Then obviously we have (∇ ·w, v − Phv) = 0, ∀ v ∈ V, ∀w ∈Wh, and we
know that the following diagram commutes

W
∇·

//

Πh

��

V

Ph

��

Wh
∇·

// Vh

i.e., divΠh = Phdiv as functions from W onto Vh. And also the following
approximation properties hold [24]:

‖w −Πhw‖ ≤ Chr‖w‖r, ∀w ∈ (Hr(Ω))d, 1 ≤ r ≤ k + 1,(3.3)

‖u− Phu‖Lp
≤ Chr‖u‖r,p, ∀u ∈ W r,p(Ω), 0 ≤ r ≤ k + 1, 1 ≤ p ≤ ∞.(3.4)

And also we define Rh : Λ −→ Λh be the projection satisfying

(λ−Rhλ,µ) = 0, ∀µ ∈ Λh,(3.5)

‖λ−Rhλ‖ ≤ Chr‖λ‖r, ∀λ ∈ (Hr(Ω))d, 0 ≤ r ≤ k + 1.(3.6)

Now we formulate the expanded mixed finite element method as follows: find
a triple (uh,λh,σh) ∈ Vh ×Λh ×Wh such that

(λh,w)− (uh,∇ ·w) = 0, ∀w ∈Wh,(3.7)

(λh,µ) + ((λh)t,µ)− (σh,µ) = 0, ∀µ ∈ Λh,(3.8)

((uh)t, v) + (∇ · σh, v) = (f(uh), v), ∀ v ∈ Vh,(3.9)

where uh(0) = Ph(u0(x)), λh(0) = Rhλ(0) = Rh(−∇u0(x)).

Theorem 3.1. (i) If f is a continuous function, then there exists a semidiscrete

approximation (uh,λh,σh) satisfying (3.7)–(3.9).
(ii) If f satisfies Lipschitz continuous on a domain D containing (x, 0,

Ph(u0(x))), then there exists a unique semidiscrete approximation (uh,λh,σh).

Proof. Let {φi : 1 ≤ i ≤ ℓ} be an orthogonal basis of Vh and {ψi : 1 ≤ i ≤ m},
{ϕi : 1 ≤ i ≤ n}, orthogonal bases of Λh, Wh, respectively. Since Wh is a
subspace ofΛh, {ϕi : 1 ≤ i ≤ n} is a subset of {ψi : 1 ≤ i ≤ m}. Let uh(x, t) =∑ℓ

i=1 αi(t)φi(x), λh(x, t) =
∑m

i=1 βi(t)ψi(x), and σh(x, t) =
∑n

i=1 ri(t)ϕi(x).
From (3.7), (3.8) and (3.9), we obtain a system of ordinary differential equa-

tions:

m∑

i=1

βi(t)(ψi,ϕj)−

ℓ∑

i=1

αi(t)(φi,∇ ·ϕj) = 0, j = 1, 2, . . . , n,

(3.10)

m∑

i=1

βi(t)(ψi,ψj) +

m∑

i=1

β′
i(t)(ψi,ψj)−

n∑

i=1

ri(t)(ϕi,ψj) = 0, j = 1, 2, . . . ,m,

(3.11)
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ℓ∑

i=1

α′
i(t)(φi, φj)+

n∑

i=1

ri(t)(∇ ·ϕi, φj)=
(
f
(
x, t,

ℓ∑

i=1

αiφi

)
, φj

)
, j = 1, 2, . . . , ℓ.

(3.12)

From (3.11), since Wh ⊂ Λh,
(3.13)

m∑

i=1

βi(t)(ψi,ϕj) +
m∑

i=1

β′
i(t)(ψi,ϕj)−

n∑

i=1

ri(t)(ϕi,ϕj) = 0, j = 1, 2, . . . , n.

Let r(t) = (r1(t), r2(t), . . . , rn(t))
T , β(t) = (β1(t), β2(t), . . . , βm(t))T , A =

(aij)1≤i,j≤n, B = (bij)1≤i≤n,1≤j≤m, aij = (ϕj ,ϕi) and bij = (ψj ,ϕi). (3.13)
can be represented by

Bβ(t) +Bβ′(t)−Ar(t) = 0.

By the invertibility ofA, we get r(t) = A−1(Bβ(t)+Bβ′(t)). Since∇·ϕi ∈ Vh,

we can represent ∇ · ϕi =
∑ℓ

k=1 γkiφk(x). From (3.12) we get

ℓ∑

i=1

α′
i(t)(φi, φj)+

n∑

i=1

ri(t)
( ℓ∑

k=1

γkiφk, φj

)
=
(
f
(
x, t,

ℓ∑

i=1

αiφi

)
, φj

)
, 1 ≤ j ≤ ℓ,

from which we have
(3.14)
ℓ∑

i=1

α′
i(t)(φi, φj)+

n∑

i=1

( ℓ∑

k=1

(φk, φj)γki

)
ri(t)=

(
f
(
x, t,

ℓ∑

i=1

αiφi

)
, φj

)
, 1 ≤j≤ ℓ.

If we letα(t)=(α1(t), α2(t), . . . , αℓ(t))
T ,Φ=(γki)1≤k≤ℓ,1≤i≤n,D=(dij)1≤i,j≤ℓ

and F (α)=(Fj(α))1≤j≤ℓ where dij=(φj , φi) and Fj(α)=
(
f
(
x, t,

∑ℓ
i=1 αiφi

)
,

φj

)
, then (3.14) can be reduced to

(3.15) Dα′(t) +DΦr(t) = F (α).

And the equation (3.10) can be represented by

m∑

i=1

βi(t)(ψi,ϕj)−
ℓ∑

i=1

ℓ∑

k=1

γkj(φk, φi)αi(t) = 0, j = 1, 2, . . . , n,

which implies

(3.16) Bβ(t)−ΦTDα(t) = 0.

By substituting r(t) = A−1(Bβ(t) +Bβ′(t)) into (3.15), we obtain

(3.17) Dα′(t) +DΦA−1Bβ(t) +DΦA−1Bβ′(t) = F (α).

Now we substitute (3.16) into (3.17) to get
{
(D +DΦA−1ΦTD)α′(t) = −DΦA−1ΦTDα(t) + F (α),

α(0) = α0,
(3.18)
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where α(0) = α0 can be determined uniquely from the initial condition that

uh(0) = Ph(u0(x)). Since D + DΦA−1ΦTD is positive definite and f is
continuous, (3.18) has a solution α(t) by the theory of the system of or-
dinary differential equations. By combining (3.16) with the relation r(t) =
A−1(Bβ(t) +Bβ′(t)), we have

r(t) = A−1ΦTDα(t) +A−1ΦTDα′(t),

which shows the existence of r(t). To prove the existence of β(t), if we let
E = (eij)1≤i,j≤m, eij = (ψj ,ψi), then E is symmetric and positive definite.
(3.11) can be reduced to

{
Eβ′(t) = Eβ(t)−BTr(t),

β(0) = β0,

where β(0) = β0 can be determined uniquely from the initial condition that
λh(0) = Rh(−∇u0(x)). Therefore β(t) exists which completes the proof of (i).
If f satisfies a Lipschitz condition on a domain D containing

(
x, 0, Ph(u0(x))

)

by the theory of the system of ordinary differential equations, (3.18) has a
unique α(t). Therefore in a consecutive order, we can prove that r(t) and β(t)
exist uniquely, which completes the proof of (ii). �

The result of the previous theorem induces the continuity of uh(x, t) =∑ℓ
i=1 αi(t)φi(x) with respect to t, so that ‖uh(t)‖L∞ is continuous with respect

to t. By (3.4), there exists a constant K∗ such that for sufficiently small h,

‖u(x, 0)− uh(x, 0)‖L∞ = ‖u0(x)− Ph(u0(x))‖L∞ ≤ K∗,(3.19)

holds. Throughout this paper C denotes a generic positive constant depen-
dent on the domain Ω,K∗, u(x, t), the constants δ and τ which manage the
regularity and quasi-uniformity of the subdivision of Ω, but independent of the
discretization sizes of space variable and time variable. If the generic constant
C depends on some specific constants besides the ones mentioned already, we
will clearly state the dependency.

To continue the analysis of the convergence of semidiscrete approximations
and fully discrete approximations, In the rest of this paper, we need to assume
that f satisfies the following locally Lipschitz continuous at u(x, t): if |u(x, t)−
u∗| ≤ 2K∗, then |f(x, t, u(x, t)) − f(x, t, u∗)| ≤ C(u,K∗)|u(x, t) − u∗| for all
(x, t) ∈ Ω× [0, T ].

Theorem 3.2. If f is locally Lipschitz continuous at u(x, t) and u, λ and σ

satisfy u ∈ L∞(Hs), λ ∈ L∞(Hs) and σ ∈ L∞(Hs), respectively and ν > d
2 ,

then

‖u− uh‖L∞(L2) + ‖λ− λh‖L∞(L2)

≤ Chν
(
‖u‖L∞(Hs) + ‖λ‖L∞(Hs) + ‖σ‖L2(Hs)

)
,
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and

‖σ − σh‖L∞(L2) ≤ Chν
(
‖u‖L∞(Hs) + ‖λ‖L∞(Hs) + ‖σ‖L∞(Hs)

)
,

where ν = min(k + 1, s), hold.

Proof. By subtracting (3.7) from (2.1), (3.8) from (2.2), and (3.9) and (2.3)
respectively, we have the followings:

(λ− λh,w)− (u − uh,∇ ·w) = 0, ∀w ∈Wh,

(3.20)

(λ− λh,µ) + (λt − (λh)t,µ)− (σ − σh,µ) = 0, ∀µ ∈ Λh,

(3.21)

(ut − (uh)t, v) + (∇ · (σ − σh), v) = (f(x, t, u)− f(x, t, uh), v), ∀ v ∈ Vh.

(3.22)

For the time being, we assume that there exists a sufficiently small h̃ to be
defined below so that

‖u(x, t)− uh(x, t)‖L∞ < 2K∗, ∀t, 0 ≤ t ≤ T, ∀h ≤ h̃,(3.23)

holds. We will prove the adequacy of this assumption (3.23) later. By choosing
w = Πhσ−σh in (3.20), µ = Rhλ−λh in (3.21) and v = Phu− uh in (3.22)
respectively, we have

(Rhλ− λh,Πhσ − σh)− (Phu− uh,∇ · (Πhσ − σh)) = 0,(3.24)

(Rhλ− λh,Rhλ− λh) + (Rhλt − λht,Rhλ− λh)

− (Πhσ − σh,Rhλ− λh) = (σ −Πhσ,Rhλ− λh),(3.25)

(Phut − uht, Phu− uh) + (∇ · (Πhσ − σh), Phu− uh)

= (f(x, t, u)− f(x, t, uh), Phu− uh).(3.26)

Combining (3.24)–(3.26), we get

1

2

d

dt
‖Phu− uh‖

2 + ‖Rhλ− λh‖
2 +

1

2

d

dt
‖Rhλ− λh‖

2

= (σ −Πhσ,Rhλ− λh) + (f(x, t, u)− f(x, t, uh), Phu− uh)

≤
1

2
‖σ −Πhσ‖

2 +
1

2
‖Rhλ− λh‖

2 + C
(
‖u− Phu‖+ ‖Phu− uh‖

)
‖Phu− uh‖

≤
1

2
‖σ −Πhσ‖

2 +
1

2
‖Rhλ− λh‖

2 + C
(
‖u− Phu‖

2 + ‖Phu− uh‖
2
)
,

from which we obtain

1

2

d

dt
‖Phu− uh‖

2 +
1

2
‖Rhλ− λh‖

2 +
1

2

d

dt
‖Rhλ− λh‖

2

≤ Ch2ν
{
‖u‖2s + ‖σ‖2s

}
+ C‖Phu− uh‖

2.(3.27)
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By taking the integration for both sides of (3.27) with respect to t from 0 to t̃,
we get

‖(Phu− uh)( t̃ )‖
2 + ‖(Rhλ− λh)( t̃ )‖

2 +

∫ t̃

0

‖Rhλ− λh‖dt

≤ Ch2ν
{
‖u‖2L2(Hs) + ‖σ‖2L2(Hs)

}
+ C

∫ t̃

0

‖Phu− uh‖
2dt.

By applying Gronwall’s Lemma we have
(3.28)

‖(Phu− uh)( t̃ )‖
2 + ‖(Rhλ− λh)( t̃ )‖

2 ≤ Ch2ν
{
‖u‖2L2(Hs) + ‖σ‖2L2(Hs)

}
,

which implies, by the approximation results (3.4) and (3.6).
(3.29)

‖u−uh‖L∞(L2)+‖λ−λh‖L∞(L2) ≤ Chν
(
‖u‖L∞(Hs)+‖λ‖L∞(Hs)+‖σ‖L2(Hs)

)
.

Now by means of contradiction, we will show that the assumption (3.23) is
appropriate. Suppose that there exists t∗ such that 0 < t∗ ≤ T , ‖u(t) −
uh(t)‖L∞ < 2K∗ holds for 0 ≤ t < t∗ but ‖u(t

∗) − uh(t
∗)‖L∞ ≥ 2K∗. Now

we take a sequence {tn}
∞
n=1 ⊂ [0, t∗) converging to t∗. Then we obviously have

‖(Phu − uh)(tn)‖ ≤ Chν{‖u‖L2(Hs) + ‖σ‖L2(Hs)}. Choose h̃ sufficiently small
so that ‖(u−uh)(tn)‖L∞ ≤ ‖(u−Phu)(tn)‖L∞ + ‖(Phu−uh)(tn)‖L∞ ≤ c(hr +

h− d
2 hν) ≤ 3

2K
∗ holds ∀h ≤ h̃. Since ‖(u−uh)(t)‖L∞ is continuous with respect

to t, ‖(u − uh)(t
∗)‖L∞ ≤ 3

2K
∗ holds which contradicts to ‖(u− uh)(t

∗)‖L∞ ≥
2K∗.

To estimate ‖σ−σh‖, we differentiate the both sides of (3.20) with respect to
t and choose w = Πhσ−σh then we have (λt−λht,Πhσ−σh)−(ut−uht,∇·
Πhσ − σh) = 0. Combining this equation with (3.21) with µ = Πhσ − σh

and (3.20) with w = Πhσ − σh yields that

(u−uh,∇·(Πhσ−σh))+(ut−uht,∇·(Πhσ−σh))−(σ−σh,Πhσ−σh) = 0,

from which by (3.2) we have the following error equation

(Phu− uh,∇ · (Πhσ − σh)) + (Phut − uht,∇ · (Πhσ − σh))

− (σ − σh,Πhσ − σh) = 0.(3.30)

Now we take v = ∇ · (Πhσ − σh) in (3.22) to get

(Phut − uht,∇ · (Πhσ − σh)) + (∇ · (σ − σh),∇ · (Πhσ − σh))

= (f(x, t, u)− f(x, t, uh),∇ · (Πhσ − σh)),

which by (3.1) implies the following

(Phut − uht,∇ · (Πhσ − σh)) + (∇ · (Πhσ − σh),∇ · (Πhσ − σh))

= (f(x, t, u)− f(x, t, uh),∇ · (Πhσ − σh)).(3.31)
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Now we subtract (3.30) from (3.31) to get

‖∇ · (Πhσ − σh)‖
2 − (Phu− uh,∇ · (Πhσ − σh)) + (σ − σh,Πhσ − σh)

= (f(x, t, u)− f(x, t, uh),∇ · (Πhσ − σh)),

which yields that,

‖∇ · (Πhσ − σh)‖
2 + (Πhσ − σh,Πhσ − σh)

= (Phu− uh,∇ · (Πhσ − σh)) + (Πhσ − σ,Πhσ − σh)

+ (f(x, t, u)− f(x, t, uh),∇ · (Πhσ − σh)).

Then by the Cauchy-Schwarz inequality we have

‖∇ · (Πhσ − σh)‖
2 + ‖Πhσ − σh‖

2

≤ C
(
‖Phu− uh‖

2 + ‖Πhσ − σ‖2 + ‖u− uh‖
2
)

≤ Ch2ν(‖u‖2L∞(Hs) + ‖λ‖2L∞(Hs) + ‖σ‖2L2(Hs) + ‖σ‖2s).

Therefore ‖σ−σh‖L∞(L2) ≤ Chν(‖u‖L∞(Hs) + ‖λ‖L∞(Hs) + ‖σ‖L∞(Hs)). �

4. Error estimates of the expanded fully discrete approximations of
u, λ and σ

In this section we construct the fully discrete approximations of u, λ and
σ using an expanded mixed Galerkin method and we prove its optimal con-
vergence in ℓ∞(L2) normed space. For a positive integer N , we let ∆t = T

N
,

tn = n(∆t) for n = 0, 1, . . ., N , and tn,θ = α1t
n + α2t

n−1, with α1 = (1 + θ)/2
and α2 = (1 − θ)/2, where 0 ≤ θ ≤ 1.

Construct (Un,Λn,Σn
θ ) ∈ Vh×Λh×Wh such that Un ∼= u(tn), Λn ∼= λ(tn),

Σn
θ
∼= σ(tn,θ), n = 2, 3, . . ., N and satisfying

(Λn,w)− (Un,∇ ·w) = 0, ∀w ∈Wh,(4.1)

(Λn,θ + ∂tΛ
n,µ)− (Σn

θ ,µ) = 0, ∀µ ∈ Λh,(4.2)

(∂tU
n, v) + (∇ ·Σn

θ , v) = (f(x, tn,θ, EUn), v), ∀ v ∈ Vh,(4.3)

where Λn,θ = α1Λ
n + α2Λ

n−1, ∂tΛ
n = Λ

n−Λ
n−1

∆t
, EUn = β1U

n−1 + β2U
n−2,

β1 = (3 + θ)/2 and β2 = (−1− θ)/2.
Since the extrapolation method (4.1)–(4.3) requires the previously computed

approximations, U0, U1, Λ0 and Λ1 a starting procedure is needed. So we
define U0 = Ph(u0(x)), Λ

0 = Rh(−∇u0(x)). Then obviously (Λ0,w)−(U0,∇·
w) = 0, ∀w ∈Wh holds.

Define (U1,Λ1,Σ1
θ) ∈ Vh × Λh ×Wh such that U1 ∼= u(t1), Λ1 ∼= λ(t1),

Σ1
θ
∼= σ(t1,θ) and (U1,Λ1,Σ1

θ) satisfies

(Λ1,w)− (U1,∇ ·w) = 0, ∀w ∈Wh,(4.4)

(Λ1,θ + ∂tΛ
1,µ)− (Σ1

θ,µ) = 0, ∀µ ∈ Λh,(4.5)

(∂tU
1, v) + (∇ ·Σ1

θ, v) = (f(x, t1,θ, U1,θ), v), ∀ v ∈ Vh,(4.6)
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where U1,θ = α1U
1 +α2U

0. Concerning the starting procedures (4.4)–(4.6) it
can be shown that if u, λ and σ satisfy the hypotheses of Theorem 4.1, then

‖u(t1)− U1‖ ≤ C(hν + (∆t)1+δθ0 ),(4.7)

‖λ(t1)−Λ1‖ ≤ C(hν + (∆t)1+δθ0 ),(4.8)

‖σ(t1,θ)−Σ1
θ‖ ≤ C(hν + (∆t)1+δθ0 )(4.9)

holds where ν = min(k + 1, s), δθ0 denotes the Kronecker symbol and the con-
stant C depending on the Sobolev norms of u, λ and σ appearing in Theorem
4.1. The proofs of these estimates are similar to the ones that will be given
concerning the principal scheme (4.1)–(4.3), so we omit the proofs.

To analyze the order of convergence we introduce the following notations:

ζu(t) = u(t)− ũ(t), ζλ(t) = λ(t)− λ̃(t), ζσ(t) = σ(t)− σ̃(t),

γn,θ
u = ũ(tn,θ)− ũn,θ, γn,θ

λ = λ̃(tn,θ)− λ̃
n,θ

,

ρn,θu = ũt(t
n,θ)− ∂tũ

n, ρn,θλ = λ̃t(t
n,θ)− ∂tλ̃

n
,

enu = ũ(tn)− Un, enλ = λ̃(tn)−Λn, en,θσ = σ̃(tn,θ)−Σn
θ ,

ξn,θu = ũn,θ − Eũn,

where ũ(t) = Phu(t), λ̃(t) = Rhλ(t) and σ̃(t) = Πhσ(t).

Lemma 4.1.

(i) For θ = 0, if uttt ∈ L∞(tn−1, tn : L2) and uttt ∈ L∞(tn−1, tn : H1),
then

‖ρn,θu ‖ ≤ C(∆t)2‖uttt‖L∞(tn−1,tn:L2) and

‖∇ρn,θu ‖ ≤ C(∆t)2‖uttt‖L∞(tn−1,tn:H1) hold.

(ii) For θ ∈ (0, 1], if utt ∈ L∞(tn−1, tn : L2) and utt ∈ L∞(tn−1, tn : H1),
then

‖ρn,θu ‖ ≤ C(∆t)‖utt‖L∞(tn−1,tn:L2) and

‖∇ρn,θu ‖ ≤ C(∆t)‖utt‖L∞(tn−1,tn:H1) hold.

Proof. By Taylor’s expansion, we easily obtain for θ = 0,

‖ρn,θu ‖ ≤ C(∆t)2‖ũttt‖L∞(tn−1,tn:L2)

holds and for θ ∈ (0, 1],

‖ρn,θu ‖ ≤ C(∆t)‖ũtt‖L∞(tn−1,tn:L2)

holds. Therefore if θ = 0, then by (3.4) we have

‖ρn,θu ‖ ≤ C(∆t)2(‖uttt‖L∞(tn−1,tn:L2)).

And similarly for 0 < θ ≤ 1, ‖ρn,θu ‖ ≤ C∆t(‖utt‖L∞(tn−1,tn:L2)) holds. By the

similar method we can prove the approximation results of ∇ρn,θu . �

Now we state the following lemmas without proof. The proofs can be ob-
tained by Taylor’s expansion easily.
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Lemma 4.2. If utt ∈ L∞(tn−2, tn : Lp) for 1 ≤ p ≤ ∞, then

‖γn,θ
u ‖Lp ≤ C(∆t)2‖utt‖L∞(tn−1,tn:Lp) and

‖ξn,θu ‖Lp ≤ C(∆t)2‖utt‖L∞(tn−2,tn:Lp)

hold.

Lemma 4.3. If λtt ∈ L∞(tn−1, tn : L2), then the following holds:

‖γn,θ
λ ‖ ≤ C(∆t)2‖λtt‖L∞(tn−1,tn:L2).

Theorem 4.1. Suppose that f satisfies the locally Lipschitz continuity at u(x,
t). Let {Un,Λn,Σn

θ }
N
n=2 ∈ Vh ×Λh ×Wh be the solutions of (4.1)–(4.3).

(i) For θ = 0, if u ∈ L∞(Hs), ut ∈ L∞(Hs), utt ∈ L∞(L2), uttt ∈ L∞(L2),
λ ∈ L∞(Hs), λtt ∈ L∞(L2), λttt ∈ L∞(L2), σ ∈ L∞(Hs) and ∆t = O(h),
then

max
2≤n≤N

‖u(tn)− Un‖ ≤ C(hν + (∆t)2)
{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖uttt‖L∞(L2) + ‖σ‖L∞(Hs)

}
,(4.10)

max
2≤n≤N

‖λ(tn)−Λn‖ ≤ C(hν + (∆t)2)
{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖uttt‖L∞(L2) + ‖λ‖L∞(Hs)

+ ‖λtt‖L∞(L2) + ‖λttt‖L∞(L2) + ‖σ‖L∞(Hs)

}
,(4.11)

and

max
2≤n≤N

‖σ(tn,θ)−Σn
θ ‖ ≤ C(hν + (∆t)2)

{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖uttt‖L∞(L2) + ‖σ‖L∞(Hs)

}
(4.12)

hold where ν = min(s, k + 1).
(ii) For 0 < θ ≤ 1, if u ∈ L∞(Hs), ut ∈ L∞(Hs), utt ∈ L∞(L2), λ ∈

L∞(Hs), λtt ∈ L∞(L2), σ ∈ L∞(Hs) and ∆t = O(h
d
2
+ε) for some ε > 0,

then

max
2≤n≤N

‖u(tn)− Un‖ ≤ C(hν +∆t)
{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖σ‖L∞(Hs)

}
,(4.13)

max
2≤n≤N

‖λ(tn)−Λn‖ ≤ C(hν +∆t)
{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs) + ‖utt‖L∞(L2)

+ ‖λ‖L∞(Hs) + ‖λtt‖L∞(L2) + ‖σ‖L∞(Hs)

}
,(4.14)

and

max
2≤n≤N

‖σ(tn,θ)−Σn
θ ‖ ≤ C(hν + (∆t))

{
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖σ‖L∞(Hs)

}
,(4.15)

hold where ν = min(s, k + 1).
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Proof. We will prove below the statement (i) only. Similarly for 0 < θ ≤ 1,
we can get the error estimations (4.13)–(4.15) under the appropriate regularity
conditions for u, λ and σ. We first prove by mathematical induction that

‖enu‖L∞ ≤ K∗/5, ∀m = 0, 1, . . . , N.(4.16)

For n = 0, (4.16) trivially holds since U0 = ũ(0). Now we assume that
‖enu‖L∞ ≤ K∗/5, ∀n ≤ m − 1 for some m with 2 ≤ m ≤ N . By (3.4) and
(4.7), (4.16) holds for n = 1 as follows:

‖e1u‖L∞ = ‖ũ1 − U1‖L∞ ≤ ch− d
2 (‖ũ1 − U1‖L∞) ≤ ch− d

2 (hν +∆t2) ≤ K∗/5.

From (4.2),

(4.17) (Λn,θ + ∂tΛ
n,w)− (Σn

θ ,w) = 0, ∀w ∈Wh.

Now substitute (4.1) into (4.17) to get

(4.18) (Un,θ,∇ ·w) + (∂tU
n,∇ ·w)− (Σn

θ ,w) = 0.

Now we take v = ∇ ·w in (4.3) and substitute this result into (4.18) to obtain

(4.19) (Un,θ,∇·w)− (∇·Σn
θ ,∇·w)+ (f(x, tn,θ, EUn),∇·w)− (Σn

θ ,w) = 0.

Substituting (2.1) into (2.2), we get

(4.20) (u,∇ ·w) + (ut,∇ ·w)− (σ,w) = 0,

and combining (4.20) and (2.3) with v = ∇ ·w we have

(4.21) (u,∇·w)−(∇·σ,∇·w)+(f(x, t, u),∇·w)−(σ,w) = 0, ∀ t ∈ (0, T ].

Now we subtract (4.19) from (4.21) to obtain that

(u(tn,θ)− Un,θ,∇ ·w)− (∇ · (σ(tn,θ)−Σn
θ ),∇ ·w)− (σ(tn,θ)−Σn

θ ,w)

(4.22)

= − (f(x, tn,θ, u(tn,θ))− f(x, tn,θ, EUn),∇ ·w).

Noting that u(tn,θ)−Un,θ = ζu(t
n,θ)+γn,θ

u +en,θu , σ(tn,θ)−Σn
θ = ζσ(t

n,θ)+en,θσ ,
and u(tn,θ) − EUn = ζu(t

n,θ) + γn,θ
u + ξn,θu + Eenu and applying (4.22) with

w = en,θσ , we have

(en,θu ,∇ · en,θσ )− (∇ · en,θσ ,∇ · en,θσ )− (en,θσ , en,θσ )(4.23)

= − (ζu(t
n,θ),∇ · en,θσ )− (γn,θ

u ,∇ · en,θσ ) + (∇ · ζσ(t
n,θ),∇ · en,θσ )

+ (ζσ(t
n,θ), en,θσ )− (f(x, tn,θ, u(tn,θ)) − f(x, tn,θ, EUn),∇ · en,θσ ).

Applying (3.4), Lemma 4.2 and (4.16), we have

‖u(tn,θ)− Evn‖L∞ ≤ ‖ζu(t
n,θ)‖L∞ + ‖γn,θ

u ‖L∞ + ‖ξn,θu ‖L∞ + ‖Eenu‖L∞

≤ 2K∗.(4.24)

Applying (3.1), we have (∇ · ζσ(t
n,θ),∇ · en,θσ ) = 0 and adopt this result, the

Cauchy-Schwarz inequality and (4.24) to the equation (4.23) then we have

‖en,θσ ‖2 + ‖∇ · en,θσ ‖2(4.25)
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≤ ‖en,θu ‖2 + C
{
‖ζu(t

n,θ)‖2 + ‖γn,θ
u ‖2 + ‖ζσ(t

n,θ)‖2 + ‖ξn,θu ‖2 + ‖Eenu‖
2
}

+
1

2
‖en,θσ ‖2 +

1

2
‖∇ · en,θσ ‖2,

which by (3.4), (3.3) and Lemma 4.2, implies that

‖en,θσ ‖2 + ‖∇ · en,θσ ‖2(4.26)

≤ 2‖en,θu ‖2 + C
{
h2ν + (∆t)4

}(
‖u‖2L∞(tn−1,tn:Hs) + ‖utt‖

2
L∞(tn−2,tn:L2)

+ ‖σ‖2L∞(tn−1,tn:Hs)

)
+ C

(
‖en−1

u ‖2 + ‖en−2
u ‖2

)
.

Now we subtract (4.3) from (2.3) to get the following
(
ut(t

n,θ)− ∂tU
n, v

)
+
(
∇ · (σ(tn,θ)−Σn

θ ), v
)

=
(
f(x, tn,θ, u(tn,θ))− f(x, tn,θ, EUn), v

)
, ∀ v ∈ Vh,

which implies by (3.1) that
(
∂tũ

n − ∂tU
n, v

)
+ (∇ · (Πhσ(t

n,θ)−Σn
θ ), v)

=
(
∂tũ

n − ut(t
n,θ), v

)
+

(
f(x, tn,θ, u(tn,θ))− f(x, tn,θ, EUn), v

)
, ∀ v ∈ Vh.

Therefore we have
(
∂te

n
u, v

)
+ (∇ · (Πhσ(t

n,θ)−Σn
θ ), v)

=
(
∂tũ

n − ut(t
n,θ), v

)
+

(
f(x, tn,θ, u(tn,θ))− f(x, tn,θ, EUn), v

)
, ∀ v ∈ Vh.

from which we deduce the following
(
enu − en−1

u , enu
)
+∆t(∇ · (Πhσ(t

n,θ)−Σn
θ ), e

n
u)

= ∆t
(
∂tũ

n − ut(t
n,θ), enu

)
+∆t

(
f(x, tn,θ, u(tn,θ))− f(x, tn,θ, EUn), enu

)
.

By noting that (enu−en−1
u , enu) ≥ (1/2)‖enu‖

2−(1/2)‖en−1
u ‖2 and applying (3.4),

Lemma 4.1 and Lemma 4.2, we get for θ = 0,

1

2
‖enu‖

2 −
1

2
‖en−1

u ‖2

≤
1

2
(∆t)‖∇ · (Πhσ(t

n,θ)−Σn
θ )‖

2 + C(∆t)‖enu‖
2

+ C(∆t)(h2ν + (∆t)4)
(
‖ut‖

2
L∞(tn−1,tn:Hs) + ‖uttt‖

2
L∞(tn−1,tn:L2)

)

+ C(∆t)
(
‖ζu(t

n,θ)‖2 + ‖γn,θ
u ‖2 + ‖ξn,θu ‖2 + ‖Eenu‖

2
)

≤
1

2
(∆t)‖∇ · (Πhσ(t

n,θ)−Σn
θ )‖

2 + C(∆t)‖enu‖
2

+ C(∆t)(h2ν + (∆t)4)
(
‖ut‖

2
L∞(tn−1,tn:Hs) + ‖uttt‖

2
L∞(tn−1,tn:L2)

+ ‖u‖2L∞(tn−1,tn:Hs) + ‖utt‖
2
L∞(tn−2,tn:L2)

)
+ C(∆t)

(
‖en−1

u ‖2 + ‖en−2
u ‖2

)
.

Now we add the both sides of the above inequality from n = 2 to n = m and
applying (4.26) we get the following,

1

2
‖emu ‖2 −

1

2
‖e1u‖

2
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≤
1

2
∆t

m∑

n=2

‖∇ · (Πhσ(t
n,θ)−Σn

θ )‖
2 + C(∆t)

m∑

n=2

‖enu‖
2

+ C(h2ν + (∆t)4)
(
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs) + ‖utt‖

2
L∞(L2) + ‖uttt‖

2
L∞(L2)

)

+ C(∆t)
m∑

n=2

(
‖en−1

u ‖2 + ‖en−2
u ‖2

)

≤
1

2
∆t

m∑

n=2

{
2‖en,θu ‖2 + C(h2ν + (∆t)4)

(
‖u‖2L∞(tn−1,tn:Hs)

+ ‖utt‖
2
L∞(tn−2,tn:L2) + ‖σ‖2L∞(tn−1,tn:Hs)) + C

(
‖en−1

u ‖2 + ‖en−2
u ‖2

)}

+ C(∆t)

m∑

n=2

‖enu‖
2 + C(h2ν + (∆t)4)

(
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs)

+ ‖utt‖
2
L∞(L2) + ‖uttt‖

2
L∞(L2)

)
+ C(∆t)

m∑

n=2

(
‖en−1

u ‖2 + ‖en−2
u ‖2

)
,

from which we have

1

2
‖emu ‖2 ≤ C(h2ν + (∆t)4)

(
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs) + ‖utt‖

2
L∞(L2)

+ ‖uttt‖
2
L∞(L2) + ‖σ‖2L∞(Hs)

)
+ C(∆t)

m∑

n=0

‖enu‖
2 +

1

2
‖e1u‖

2.

Since ∆t is sufficiently small, we obtain

‖emu ‖2 ≤ C∆t

m−1∑

n=0

‖enu‖
2 + C(h2ν + (∆t)4)

{
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs)

+ ‖utt‖
2
L∞(L2) + ‖uttt‖

2
L∞(L2) + ‖σ‖2L∞(Hs)

}
+ ‖e1u‖

2.

By applying the discrete type of Gronwall inequality, we get

‖emu ‖2 ≤ C‖e1u‖
2 + C

(
h2ν + (∆t)4

)(
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs)(4.27)

+ ‖utt‖
2
L∞(L2) + ‖uttt‖

2
L∞(L2) + ‖σ‖2L∞(Hs)

)
.

Therefore ‖emu ‖L∞ ≤ Ch− d
2 {hν + (∆t)2} ≤ K∗/5 holds, so by (4.7) we proved

the statement (4.10) as follows:

max
2≤m≤N

‖u(tn)− Un‖ ≤ C
(
hν + (∆t)2

)(
‖u‖L∞(Hs) + ‖ut‖L∞(Hs)

+ ‖utt‖L∞(L2) + ‖uttt‖L∞(L2) + ‖σ‖L∞(Hs)

)
.

From (4.26) and (4.27) we get

‖en,θσ ‖2 ≤ C‖u(t1)− U1‖+ C
(
h2ν + (∆t)4

)(
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs)

+ ‖utt‖
2
L∞(L2) + ‖uttt‖

2
L∞(L2) + ‖σ‖2L∞(Hs)

)
.
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Therefore by (4.7), we proved the statement (4.12) as follows:

‖σ(tn,θ)−Σn
θ ‖ ≤ ‖ζσ(t

n,θ)‖+ ‖en,θσ ‖

≤ C
(
hν + (∆t)2

){
‖u‖L∞(Hs) + ‖ut‖L∞(Hs) + ‖utt‖L∞(L2)

+ ‖uttt‖L∞(L2) + ‖σ‖L∞(Hs)

}
.(4.28)

To estimate ‖λ(tn)−Λn‖, we substract (4.2) from (2.2) to get

(4.29) (λ(tn,θ)−Λn,θ,µ) + (λt(t
n,θ)− ∂tΛ

n,µ)− (σ(tn,θ)−Σn
θ ,µ) = 0.

Since λ(tn,θ)−Λn,θ = ζλ(t
n,θ) + γn,θ

λ + en,θλ , we get

λt(t
n,θ)− ∂tΛ

n = λt(t
n,θ)− λ̃t(t

n,θ) + λ̃t(t
n,θ)− ∂tλ̃

n + ∂tλ̃
n − ∂tΛ

n

= ζλt(t
n,θ)− ρn,θλ + ∂te

n
λ.

Adopting this relation to (4.29) and applying (3.5), we have

(en,θλ , enλ) + (∂te
n
λ, e

n
λ) = − (ζλ(t

n,θ) + γn,θ
λ , enλ)− (ζλt(t

n,θ)− ρn,θλ , enλ)

+ (σ(tn,θ)−Σn
θ , e

n
λ)

= − (γn,θ
λ , enλ) + (ρn,θλ , enλ) + (σ(tn,θ)−Σn

θ , e
n
λ),

which implies,

1

2∆t

(
‖enλ‖

2 − ‖en−1
λ ‖2

)
≤

((
α1 +

α2

2

)
‖enλ‖

2 +
α2

2
‖en−1

λ ‖2
)
+

1

2
‖γn,θ

λ ‖2

+
3

2
‖enλ‖

2 +
1

2
‖ρn,θλ ‖2 +

1

2
‖Σn

θ − σ(tn,θ)‖2

≤ C
{
‖enλ‖

2 + ‖en−1
λ ‖2

}
+

1

2
‖γn,θ

λ ‖2 +
1

2
‖ρn,θλ ‖2

+
1

2
‖Σn

θ − σ(tn,θ)‖2.(4.30)

Now we add the both sides of (4.30) from n = 2 to N to obtain

‖eNλ ‖2 ≤ C∆t

N∑

n=1

‖enλ‖
2+∆t

N∑

n=2

(
‖γn,θ

λ ‖2+‖ρn,θλ ‖2+‖Σn
θ −σ(t

n,θ)‖2
)
+‖e1λ‖

2.

Therefore for sufficiently small ∆t, by applying Lemmas 4.3, 4.1 and (4.28) we
conclude that

‖eNλ ‖2 ≤ C∆t

N−1∑

n=1

‖enλ‖
2 + C(∆t)

(
h2ν + (∆t)4

) N∑

n=2

(
‖λtt‖

2
L∞(tn−1,tn:L2)

+ ‖λttt‖
2
L∞(tn−1,tn:L2)

+ ‖u‖2L∞(Hs) + ‖ut‖
2
L∞(Hs) + ‖utt‖

2
L∞(L2)

+ ‖uttt‖
2
L∞(L2) + ‖σ‖2L∞(Hs)

)
+ C‖λ̃(t1)−Λ1‖2.

Now we apply the discrete-type Gronwall inequality and (4.8) to get

‖eNλ ‖2 ≤ C
(
h2ν + (∆t)4

){
‖u‖2L∞(Hs) + ‖ut‖

2
L∞(Hs) + ‖utt‖

2
L∞(L2)
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+ ‖uttt‖
2
L∞(L2) + ‖λtt‖

2
L∞(L2)

+ ‖λttt‖
2
L∞(L2)

+ ‖σ‖2L∞(Hs)

}
,

from which we obtain the statement (4.11)

‖λ(tn)−Λn‖ ≤ C
(
hν + (∆t)2

){
‖u‖L∞(Hs) + ‖ut‖L∞(Hs) + ‖utt‖L∞(L2)

+ ‖uttt‖L∞(L2) + ‖λ‖L∞(Hs) + ‖λtt‖L∞(L2) + ‖λttt‖L∞(L2)

+ ‖σ‖L∞(Hs)

}
. �

5. Numerical results and conclusions

In this section, we will present some numerical results to verify the conver-
gence order of the proposed EMFEM. For the sake of convenience we consider
the Sobolev equation (1.1) with Ω = [0, 1] and T = 1.0. The fully discrete
scheme (4.1)-(4.6) is characterized by θ. For each θ, we provide a set of numer-
ical results with f(x, t) and f(x, t, u) which is locally Lipschitz continuous in
u. And also we choose k = 0 i.e. Vh = {v ∈ V | v|E ∈ P0(E), ∀E ∈ Eh},

Λh = {µ ∈ Λ | µ|E ∈ P0(E)⊕ xP0(E), ∀E ∈ Eh},

Wh = {w ∈W | w|E ∈ P0(E)⊕ xP0(E), ∀E ∈ Eh}.

(I) In case of θ = 1 (Bachward Euler method).
To prove the order of convergence we choose ∆t = h.

(1) with f(x, t) = (1 + 2π2)et cos(πx).
With u0(x) = cosπx, the solution of (1.1) is given by u(x, t) = et cos(πx).
Tables 1 and 2 show that the approximations of u(x, t), λ(x, t) = −ux and

σ(x, t) = −(ux+ux) converge with convergence order = 1 for the space variable
as well as the time variable as we expect from Theorem 4.1(ii).

Table 1

h = ∆t ‖u(tN)− UN‖ convergence order
1/10 0.1765 e-0
1/20 0.8897 e-1 0.99
1/40 0.4468 e-1 0.99
1/80 0.2239 e-1 1.00
1/160 0.1121 e-1 1.00
1/320 0.5607 e-2 1.00

(2) with f(x, t, u) = u+ u2 + 2et(2x− 1) − e2t(1

2
x2

−
1

3
x3)2.

With u0(x) =
1
2x

2− 1
3x

3, the solution of (1.1) is given by u(x, t) = et(12x
2−

1
3x

3). Then −ux = et(x2−x) and −ux−uxt = 2et(x2−x). Tables 3 and 4 show
that the approximations of u, −ux and −(ux+ uxt) converge with convergence
order = 1.
(II) In case of θ = 0 (Crank-Nicolson method).
(i) with f(x, t) = (1 + 2π2)et cos(πx).
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Table 2

h = ∆t ‖λ(tN )−ΛN‖ convergence order ‖σ(tN )−ΣN
1 ‖ convergence order

1/80 0.1619 e-1 0.6988 e-3
1/160 0.8258 e-2 0.97 0.4428 e-3 0.66
1/320 0.4170 e-2 0.99 0.2987 e-3 0.57
1/640 0.2095 e-2 0.99 0.1711 e-3 0.80
1/1280 0.1050 e-2 1.00 0.9116 e-4 0.91
1/2560 0.5258 e-3 1.00 0.4700 e-4 0.96

Table 3

h = ∆t ‖u(tN)− UN‖ convergence order
1/10 0.1865 e-1
1/20 0.9760 e-2 0.93
1/40 0.4992 e-2 0.97
1/80 0.2523 e-2 0.98
1/160 0.1268 e-2 0.99
1/320 0.6359 e-3 1.00

Table 4

h = ∆t ‖λ(tN )−ΛN‖ convergence order ‖σ(tN )−ΣN
1 ‖ convergence order

1/40 0.2720 e-2 0.5365 e-3
1/80 0.1421 e-2 0.94 0.3596 e-3 0.58
1/160 0.7258 e-3 0.97 0.2120 e-3 0.76
1/320 0.3668 e-3 0.99 0.1147 e-3 0.89
1/640 0.1843 e-3 0.99 0.5957 e-4 0.95
1/1280 0.9242 e-4 1.00 0.3035 e-4 0.97

Theorem 4.1 shows that for θ = 0, the scheme converges with convergence order
2 in temporal direction. As shown in Table 5, UN (x) converges to u(tN ) with
convergence order 1, since the spatial error O(h) dominates the temporal error
O(∆t2). Since with d = 1 Λh(E) =Wh(E) = P0(E)⊕xP0(E) = P1(E) holds,
so that we have a chance to get the approximations ΛN and ΣN

θ of λ(tN ) and
σ(tN ) which converge to λ(tN ) and σ(tN ) with convergence order 2 in spatial
variable as shown in Table 6, though UN converges to u(tN ) with convergence
order 1.
(2) with f(x, t, u) = u+ u2 + 2et(2x− 1) − e2t(1

2
x2

−
1

3
x3)2.

As appeared in Tables 7 and 8, we have the computational convergence
results which validate the theoretical proofs of Theorem 4.1 with a locally
Lipschitz continuous f(x, t, u) in u.

Conclusions. In this paper, applying the EMFEM to the problem (1.1) we
approximate the scalar unknown, the gradient and the flux separately and prove
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Table 5

h = ∆t ‖u(tN)− UN‖ convergence order
1/10 0.1746 e-0
1/30 0.5812 e-1 1.00
1/90 0.1937 e-1 1.00
1/270 0.6456 e-2 1.00
1/810 0.2152 e-2 1.00

Table 6

h = ∆t ‖λ(tN )−ΛN‖ convergence order ‖σ(tN )−ΣN
1 ‖ convergence order

1/10 0.4958 e-1 0.9834 e-1
1/30 0.5519 e-2 2.00 0.1094 e-1 2.00
1/90 0.6133 e-3 2.00 0.1216 e-2 2.00
1/270 0.6815 e-4 2.00 0.1351 e-3 2.00
1/810 0.7572 e-5 2.00 0.1501 e-4 2.00

Table 7

h = ∆t ‖u(tN)− UN‖ convergence order
1/10 0.1444 e-1
1/30 0.4781 e-2 1.01
1/90 0.1592 e-2 1.00
1/270 0.5306 e-3 1.00
1/810 0.1769 e-3 1.00

Table 8

h = ∆t ‖λ(tN )−ΛN‖ convergence order ‖σ(tN )−ΣN
1 ‖ convergence order

1/10 0.4763 e-2 0.9815 e-2
1/30 0.5311 e-3 2.00 0.1094 e-2 2.00
1/90 0.5906 e-4 2.00 0.1217 e-3 2.00
1/270 0.6565 e-5 2.00 0.1353 e-4 2.00
1/810 0.7295 e-6 2.00 0.1504 e-5 2.00

the convergence of optimal order. We prove the convergence of three unknowns
theoretically as well as computationally. We present the numerical results with
d = 1 which verify the theoretical analysis of the optimal order of convergence
of three unknowns. We conclude that the EMFEM accomplishes our purpose
in approximating the unknowns of the semilinear Sobolev equations.
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