• Title/Summary/Keyword: $Interleukin-1\beta$

Search Result 927, Processing Time 0.027 seconds

In Vitro and In Vivo Effects of Piceatannol and Resveratrol on Glucose Control and TLR4-NF-κB Pathway (피세아테놀과 레스베라트롤의 혈당조절 및 TLR4-NF-κB 경로 조절 작용)

  • Lee, Hee Jae;Lee, Hae-Jeung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV), which is a polyphenol known to extend lifespan by stimulating sirtuins. The aim of this study was to investigate the effects of PIC and RSV on the toll-like receptor 4 (TLR4)-nuclear factor kappa B ($NF-{\kappa}B$) pathway in mouse hepatocytes and an obese/diabetic KK/HlJ mouse model. AML12 mouse hepatocytes in the absence or presence of palmitic acids (PA) were treated with PIC ($50{\mu}M$) or RSV ($50{\mu}M$). Male KK/HlJ mice at 20 weeks of age were divided into three subgroups as follows: 1) obese and diabetic control (KK), 2) KK_PIC, and 3) KK_RSV. PIC and RSV were administered orally at a dose of 10 mg/kg/d for 4 weeks. Four weeks of PIC and RSV treatment did not affect body weight or food intake in KK mice. Serum fasting blood glucose was significantly reduced in KK_PIC, and 2 h oral glucose tolerance test area under the curve was significantly reduced by PIC and RSV treatment in KK mice. PIC tended to improve homeostasis model assessment of the insulin resistance index (HOMA-IR) and HOMA beta-cells in diabetic KK mice. TLR4 and $NF-{\kappa}B$ were down-regulated by PIC and RSV treatments in hepatocytes in the absence or presence of PA. Insulin receptor, AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma, nucleotide oligomerization domain-like receptor family pyrin domain-containing 3, interleukin-1, and $NF-{\kappa}B$ were altered in PIC-treated livers. Collectively, PIC and RSV inhibited the $TLR4-NF-{\kappa}B$ pathway, and PIC seems to be more effective than RSV in the regulation of analyzed targets, which are involved in insulin signaling and inflammation in vivo.

The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

  • Lee, Su Jung;Noh, Kyung Tae;Kang, Tae Heung;Han, Hee Dong;Shin, Sung Jae;Soh, Byoung Yul;Park, Jung Hee;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Park, Won Sun;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naive T cells to polarized $CD4^+$ and $CD8^+$ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of $CD4^+$ and $CD8^+$ T cells.

Anti-Inflammatory Effects of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in LPS-Stimulated Macrophages (LPS로 자극한 대식세포에서 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose의 염증 억제 효과)

  • Lee, Hee Won;Kang, Ye Rim;Bae, Min Seo;Kim, Yoon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.409-416
    • /
    • 2017
  • 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose (PGG) is a gallotannin isolated from Galla Rhois. In a previous study, PGG was shown to suppress the allergic response by attenuating immunoglobulin E production both in vitro and in vivo. However, the effect of PGG on bacteria-induced inflammation at physiological concentration remains unclear. Therefore, the aim of this study was to investigate the effect of PGG on lipopolysaccharide (LPS)-stimulated macrophages. PGG inhibited release of nitric oxide (NO) and prostaglandin $E_2$ by alleviating protein expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Furthermore, PGG suppressed the release of interleukin-6 and tumor necrosis factor-${\alpha}$ induced by LPS. Further study indicated that PGG blocked translocation of the p65 subunit of nuclear factor-${\kappa}B$ from the cytosol into the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of PGG. Collectively, these data suggest that PGG might be useful for the treatment of inflammatory disease.

Inhibitory Effect of Extract from Ostericum koreanum on LPS-induced Proinflammatory Cytokines Production in RAW264.7 Cells (LPS로 자극한 RAW264.7 세포에서 강활 추출물의 염증성세포활성물질의 억제효과)

  • Park, Hee-Je;Bae, Gi-Sang;Kim, Do-Yun;Seo, Sang-Wan;Park, Kyung-Bae;Kim, Byung-Jin;Song, Je-Moon;Lee, Kyung-Yong;Na, Chul;Shin, Byung-Chul;Park, Sung-Joo;Song, Ho-Joon;Hwang, Sung-Yeon
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • Objectives : The present study was designed to investigate whether Ostericum koreanum (OK) could regulate lipopolysaccharide (LPS)-induced inflammatory response in vitro and in vivo. Methods : To evaluate of anti-inflammatory effect of OK, we examined Nitric oxide (NO), proinflammatory cytokines production in LPS-stimulated RAW264.7 cells. Furthermore, we checked molecular mechanism especially in the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory kappa B a ($Ik-B{\alpha}$) using western blot and also investigated survival of mice in LPS-mediated endotoxin shock. Results : 1. Extract from OK itself have weak cytotoxic effect on RAW264.7 cells. Extract from OK inhibited LPS-induced NO, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, IL-6 and IL-10 production in RAW264.7 cells. 2. OK inhibited the phosphorylation of MAPKs, such as p38, extracelluar signal-regulated kinase (ERK1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of $I{\kappa}-B{\alpha}$ in the LPS-stimulated RAW264.7 cells 3. OK did not inhibit LPS-induced endotoxin shock. Conclusions : OK down-regulated LPS-induced NO and cytokines production through suppressing activation of MAPKs and degradation of $I{\kappa}-B{\alpha}$. Our results suggested that OK may be a beneficial drug against inflammatory diseases.

  • PDF

The Effect of Gefitinib on Immune Response of Human Peripheral Blood Monocyte-Derived Dendritic Cells (인간 말초혈액 단핵구 유래 수지상세포의 면역반응에 미치는 Gefitinib의 영향)

  • Cho, Jin-Hoon;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Jeon, Doo-Soo;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Background: Synergistic antitumor effects of the combined chemoimmunotherapy based on dendritic cells have been reported recently. The aim of this study is to search new applicability of gefitinib into the combination treatment through the confirmation of gefitinib effects on the monocyte derived dendritic cells (moDCs); most potent antigen presenting cell (APC). Methods: Immature and mature monocyte-derived dendritic cell (im, mMoDC)s were generated from peripheral blood monocyte (PBMC) in Opti-MEM culture medium supplemented with IL-4, GM-CSF and cocktail, consisting of TNF-${\alpha}$ (10 ng/mL), IL-$1{\beta}$ (10 ng/mL), IL-6 (1,000 U/mL) and $PGE_2$ ($1{\mu}/mL$). Various concentrations of gefitinib also added on day 6 to see the influence on immature and mature MoDCs. Immunophenotyping of DCs under the gefitinib was performed by using monoclonal antibodies (CD14, CD80, CD83, CD86, HLA-ABC, HLA-DR). Supernatant IL-12 production and apoptosis of DCs was evaluated. And MLR assay with $[^3H]$-thymidine uptake assay was done. Results: Expression of CD83, MHC I were decreased in mMoDCs and MHC I was decreased in imMoDCs under gefitinib. IL-12 production from mMoDCs was decreased under $10{\mu}M$ of gefitinib sinificantly. Differences of T cell proliferation capacity were not observed in each concentration of geftinib. Conclusion: In spite of decreased expressions of some dendritic cell surface molecules and IL-12 production under $10{\mu}M$ of gefitinib, significant negative influences of gefitinib in antigen presenting capacity and T cell stimulation were not observed.

Enhancing Effect of Pteridium aquilinum and Aster scaber Added Doenjang on Immunomodulatory Activity (고사리(Pteridium aquilinum) 및 취나물(Aster scaber)이 첨가된 된장의 면역증강 효과)

  • Sung, Nak-Yun;An, Eun-Ju;Park, Won-Jong;Park, Woo-Young;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.445-451
    • /
    • 2016
  • This study demonstrated the immunological effects of methanol extracts from Doenjang added with wild plants (Pteridium aquilinum and Aster scaber) on bone-marrow derived macrophages and mouse splenocytes. Doenjang (DJ) and wild plant added Doenjang (WPDJ) extracts were treated to bone-marrow derived macrophages (BMDM) and splenocytes, and cell proliferation and cytokine production were measured. Cell proliferation of BMDM and splenocytes was more highly elevated in the WPDJ-treated group compared to the DJ-treated group. Cytokine [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, IL-10, and IL-12] production in BMDM also significantly increased in the WPDJ-treated group. Similarly, in the case of cytokine production in splenocytes, WPDJ treatment highly increased production of Th 1 type cytokines [interferon (IFN)-${\gamma}$ and IL-2] but did not affect production of Th 2 type cytokines (IL-4). These results suggest that wild plants could improve the immunomodulatory activity of Doenjang and may be effective for the development Doenjang.

Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro (In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과)

  • Kim, Young-Kyoon;Kim, Seung-Joon;Park, Yong-Keun;Kim, Seok-Chan;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak;Kim, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.691-702
    • /
    • 2000
  • Background : Acute lung injury (ALI) is a commonly encountered respiratory disease and its prognosis is poor when the treatment is not provided promptly and properly. However no specific pharmacologic treatment is currently available for ALI, although recently several supportive drugs have been under scrutiny. We studied anti-inflammatory effects of pentoxifylline (PF), a methylated xanthine, and ONO-5046, a synthetic neutrophil elastase inhibitor on lipopolysaccharide (LPS)-induced ALI in vitro. Methods : To establish an in vitro model of LPS-induced ALI, primary rat alveolar macrophages and peripheral neutrophils in various ratios (1:0, 5:1, 1:1, 1:5, 0:1) were co-cultured with transformed rat alveolar epithelial cells (L2 cell line) or vascular endothelial cells (IP2-E4 cell line) under LPS stimulation. Each experiment was divided into five groups-control, LPS, LPS+PF, LPS+ONO, and LPS+PF+ONO. We compared LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils in various ratios, and the resultant cytotoxicity on L2 cells or IP2-E4 cells between groups. In addition we also compared the productions of tumor necrosis factor (TNF)-$\alpha$ interleukin (IL)-$1{\beta}$, monocyte chemotactic protein(MCP)-1, IL-6, and IL-10 as well as mRNA expressions of TNF-$\alpha$ inducible nitric oxide synthetase(iNOS), and MCP-1 from LPS-stimulated primary rat alveolar macrophages between groups. Results : (1) PF and ONO-5046 in each or both showed a trend to suppress LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils regardless of their ratio, except for the LPS+PF+ONO group with the 1:5 ratio, although statistical significance was limited to a few selected experimental conditions. (2) PF and ONO-5046 in each or both showed a trend to prevent IP2-E4 cells from LPS-induced cytotoxicity by primary rat alveolar macrophages and peripheral neutrophils regardless their ratio, although statistical significance was limited to a few selected experimental conditions. the effects of PF and/or ONO-5046 on LPS-induced L2 cell cytotoxicity varied according to experimental conditions. (3) PF showed a trend to inhibit LPS-induced productions of INF-$\alpha$ MCP-1, and IL-10 from primary rat alveolar macrophages. ONO-5046 alone didnot affect the LPS-induced productions of proinflammatory cytokines from primary rat alveolar macrophages but the combination of PF and ONO-5046 showed a trend to suppress LPS-induced productions of INF-$\alpha$ and IL-10 PF and ONO-5046 in each or both showed a trend to increase LPS-induced IL-$\beta$ and IL-6 productions from primary rat alveolar macrophages. (4) PF and ONO-5046 in each or both showed a trend to attenuate LPS-induced mRNA expressions of TNF-$\alpha$ and MCP-1 from primary rat alveolar macrophages but at the same time showed a trend increase iNOS mRNA expression. Conclusion : These results suggest that PF and ONO-5046 may play a role in attenuating inflammation in LPS-induced ALI and that further study is needed to use these drugs as a new supportive therapeutic strategy for ALI.

  • PDF

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Anti-inflammatory Activity of Extracts of Hovenia dulcis on Lipopolysaccharides-stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 대식세포에 대한 헛개나무(Hovenia dulcis) 추출물의 항염증 효과)

  • Woo, Hyun Sim;Lee, Sun Min;Heo, Jeong Doo;Lee, Min-Sung;Kim, Yeong-Su;Kim, Dae Wook
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.466-477
    • /
    • 2018
  • In this study, the anti-inflammatory activities of the extracts of different parts of Hovenia dulcis such as leaves, stems, and roots were investigated. Among them, the roots extract (RE) showed the most potent suppressive effect against pro-inflammatory mediators in LPS-stimulated mouse macrophage cells. RE induced dose-dependent reduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and concomitantly reduced the production of NO and $PGE_2$. Additionally, pre-treatment with RE significantly suppressed the production of inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6, as well as mRNA levels. Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-kB) were also strongly attenuated by RE in RAW264.7 cell. Furthermore, RE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increase HO-1 activity in RAW264.7 macrophages. Therefore, these results indicate that RE strongly inhibits LPS-induced inflammatory responses by blocking NF-kB activation, inhibiting MAPKs phosphorylation, and enhancing HO-1 expression in macrophages, suggesting that RE of H. dulicis and a major component, 27-O-protocatechuoylbetulinic acid could be applied as a valuable natural anti-inflammatory material.

Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

  • Song, Young Min;Kim, Myeong Hyeon;Kim, Ha Na;Jang, Insurk;Han, Jeong Hee;Fontamillas, Giselle Ann;Lee, Chul Young;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.403-409
    • /
    • 2018
  • Objective: The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO) supplement Shield Zn (SZ) at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods: Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively), 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH) and crypt depth (CD) of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results: There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05). The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I) and interleukin (IL)-10 regressed and tended to regress (p = 0.053) on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis $factor-{\alpha}$, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth $factor-{\beta}1$ mRNA levels were lower for the SZ group than for PC. Conclusion: The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.