• Title/Summary/Keyword: $H^{\infty}$ controller

Search Result 572, Processing Time 0.023 seconds

A Controller Design for an Induction Motor Using Fuzzy PI (Fuzzy PI를 이용한 유도전동기의 제어)

  • Park, Seong-Hun;Ko, Chang-Min;Lee, Hyun-Seok;Park, Seung-Kyu;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1725_1726
    • /
    • 2009
  • The purpose for this paper is to obtain the ��$H_{\infty}$ LMI with fuzzy PI controller for induction motor which is nonlinear system. The controller type is PI and the control gains are obtained based on $H_{\infty}$ control problem. The PI controller is considered a part of a plant and the problem is changed to get controller with static gains. The nonlinear system is approximated as several linear systems and combined by using fuzzy technique.

  • PDF

Design of the Anti-windup and Bumpless Transfer Controller with Application to Nonlinear Boiler Systems (누적방지 무충돌 전환 제어기의 설계와 비선형 보일러 시스템 적용)

  • Lee, Young-Sam;Lee, Myung-Eui;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.247-253
    • /
    • 2000
  • In this paper, we deal with the full range control problem of nonlinear boiler systems subject to complex actuator constraints. Firstly, $H\infty$ loop shaping design procedure[10] is used for the controller design. Secondly, modified high-gain feedback[11] for the loop shaping controller is adopted for the anti-windup function and the bumpless transfer technique between controllers is proposed for the full range control of nonlinear systems. Finally, the performance of the proposed controller is demonstrated through the simulation studies.

  • PDF

A Robust Longitudinal Landing Controller to Datalink Time Delay (데이터링크 시간지연에 강건한 종운동 착률제어기 설계)

  • Lee, Sang-Hyo;Rhee, Ihn-Seok;Kee, Chang-Don;Koo, Hueon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • This paper deals with designing a ground-based longitudinal landing controller which is robust to datalink time delays. Time delays occur because forward velocity measurements are downlinked and the controller output commands are uplinked. An $H_{\infty}$ controller was designed by using the input/output decomposition where time delay is modeled as a first-order system with Pade approximation. Linear simulations show that the system tracks well the predefined path and is robust to the variation of time delay.

A Design of an Active Noise Controller in a Communication Headset (통신용 헤드셋을 위한 능동소음제어기의 설계)

  • Chung, Tae-Jin;Chung, Chan-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • In this paper, an active noise controller for a communication headset was designed. In a communication headset, there exist information signals such as voices from the end for the communication line as well as also, undesirable noises with are induced by external noise sources such as engine noises. Therefore, it is necessary to reduce the external noises for clear hearing of the communication signals. This problem was solved by robust H(sub)$\infty$ controller to reduce noise and a compensator for information signals The designed controller was implemented using TMS320C31 DSP Op-amp, and several experiments were performed to verify its performance. The results showed that the controller reduces the undesirable noises sufficiently, while communication signals are not reduced.

  • PDF

A Study on the Design of the Robust Feedback Active Noise Controller (강인한 궤환 능동 소음 제어기의 설계에 관한 연구)

  • Ahn, Woo-Hyun;Chung, Tae-Jin;Yu, Chi-Hyung;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1018-1020
    • /
    • 1996
  • In this paper, when a robust active noise controller for a small cavity to control the noise induced in the cavity is designed, the Graphical method based on the robust stability and performance requirements is studied. The problem of designing controller that achieve these robust performance conditions is related to minimizing the $H_{\infty}$ norm of the mixed sensitivity function by using $H_{\infty}$ control theory. Also, For design the controller, the loopshaping method which control the weight functions to satisfy the design specification without loss of a robust performance can be used. Therefore, we determined the acceptable design specification with the system characteristics of the small cavity and obtained its robust controller with the robust performance specifications by stability margin.

  • PDF

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Design of Static Output Feedback Controllers for Rollover Prevention (차량 전복 방지를 위한 정적 출력 피드백 제어기 설계)

  • Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.

Robust Positioning Control of a Flexible beam using $H_2/H_{\infty}$ and $\mu$-theory ($H_2$/H$\infty$$\mu$이론을 이용한 유연 빔의 위치제어)

  • 최연욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using mixed $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally. Next, a robust controller is designed based on the mixed $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to mixed $H_2/H_{\infty}$ control and $\mu$-theory. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF

H∞ Control of T-S Fuzzy Systems Using a Fuzzy Basis- Function-Dependent Lyapunov Function (퍼지 기저함수에 종속적인 Lyapunov 함수를 이용한 T-S 퍼지 시스템의 H∞ 제어)

  • Choi, Hyoun-Chul;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.615-623
    • /
    • 2008
  • This paper proposes an $H_{\infty}$ controller design method for Takagi-Sugeno (T-S) fuzzy systems using a fuzzy basis-function-dependent Lyapunov function. Sufficient conditions for the guaranteed $H_{\infty}$ performance of the T-S fuzzy control system are given in terms of linear matrix inequalities (LMIs). These LMI conditions are further used for a convex optimization problem in which the $H_{\infty}-norm$ of the closed-loop system is to be minimized. To facilitate the basis-function-dependent Lyapunov function approach and thus improve the closed-loop system performance, additional decision variables are introduced in the optimization problem, which provide an additional degree-of-freedom and thus can enlarge the solution space of the problem. Numerical examples show the effectiveness of the proposed method.

Observer-based Fault Tolerant Controller Design for T-S Fuzzy Systems (T-S 퍼지 시스템을 위한 관측기 기반 고장포용 제어기 설계)

  • Jee, Sung-Chul;Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1154-1158
    • /
    • 2011
  • In this paper, we discuss an observer-based fault tolerant controller design for the T-S (Takagi-Sugeno) fuzzy system with exogenous disturbance. To derive robust controller design conditions, we use $H_{\infty}$ design technique. The design conditions are derived in terms of linear matrix inequalities. An illustrative example is provided to show the effectiveness of the proposed methodology.