• Title/Summary/Keyword: $Ge_1Se_1Te_2$

Search Result 32, Processing Time 0.035 seconds

Phase-Change Properties of annealed $Ge_1Se_1Te_2$ thin film with Sb doping for Application of Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 열처리 후 상변화 특성)

  • Kim, Hyun-Koo;Choi, Hyuck;Nam, Ki-Hyeon;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.106-107
    • /
    • 2007
  • A detailed investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb with annealing.

  • PDF

Electrical characteristic for Phase-change Random Access Memory according to the $Ge_{1}Se_{1}Te_{2}$ thin film of cell structure (상변화 메모리 응용을 위한 $Ge_{1}Se_{1}Te_{2}$ 박막의 셀 구조에 따른 전기적 특성)

  • Na, Min-Seok;Lim, Dong-Kyu;Kim, Jae-Hoon;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1335-1336
    • /
    • 2007
  • Among the emerging non-volatile memory technologies, phase change memories are the most attractive in terms of both performance and scalability perspectives. Phase-change random access memory(PRAM), compare with flash memory technologies, has advantages of high density, low cost, low consumption energy and fast response speed. However, PRAM device has disadvantages of set operation speed and reset operation power consumption. In this paper, we investigated scalability of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material to improve its properties. As a result, reduction of phase change region have improved electrical properties of PRAM device.

  • PDF

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

Phase Change Characteristics of Ge-Se-Te Thin Film for PRAM (PRAM을 위한 Ge-Se-Te 박막의 상변환 특성)

  • Shin, Jae-Ho;Kim, Byung-Cheul;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.982-987
    • /
    • 2011
  • In this study, $Ge_8Se_{(2+x)}Te_{(6-x)}$ thin film amorphous-to-crystalline phase-change rate was evaluated in using a nano-pulse scanner. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-31 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the Ge-Se-Te film is largely improved by adding Se.

A Study on the Thermal, Electrical Characteristics of Ge-Se-Te Chalcogenide Material for Use in Phase Change Memory

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.223-226
    • /
    • 2008
  • $Ge_1Se_1Te_2$ chalcogenide amorphous materials was prepared by the conventional melt-quenching method. Samples were processed bye-beam evaporator systems and RF-sputtering systems. Phase change characteristics were analyzed by measuring glassification temperature, crystallization temperature and density of bulk material. The thermal characteristics were measured at the temperature between 300 K and 700 K, and the electrical characteristics were studied within the range from 0 V to 3 V. The obtained results agree with the electrothermal model for Phase-Change Random Access Memory.

The study for phase change properties of Se added $Ge_2Sb_2Te_5$ thin films ($Ge_2Sb_2Te_5$ 박막의 Se 증가에 따른 상변화 특성 연구)

  • Lim, Woo-Sik;Kim, Sung-Won;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.166-166
    • /
    • 2007
  • PRAM (phase-change random access memory)은 전류 펄스 인가에 따른 기록매질의 비정질-결정질 간 상변화와 그에 동반되는 저항변화를 이용하는 차세대 비휘발성 메모리 소자로서 연구되어지고 있다. 본 논문에서는 $(Ge_2Sb_2Te_5)_{1-x}Se_x$ (x=0,0.05,0.1,0.15) 조성에 대한 벌크 및 박막시료를 제작하고 각 조성에 대한 상변화 특성을 분석하였다. XRD를 통해 열처리 온도에 따른 구조적 분석을 실시하였고 UV-Vis-IR spectrophotometer를 사용하여 박막의 광학적 특성을 분석하였다. 또한 각 조성의 결정화 속도를 비교하기 위해 static tester를 사용하여 레이저 펄스 시간에 대한 반사도 변화를 측정하였고 DSC를 통해 결정화 온도를 측정하였다.

  • PDF

Controlled Crystallization and its Effects on Some Properties of Ge-Se-Te Chalcogenide Glass (Ge-Se-Te계 Chalcogenide 유리의 결정화 및 결정화가 물성에 미치는 영향)

  • 송순모;최세영;이용근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.855-862
    • /
    • 1996
  • The nucleation and the crystal growth rates of Ge-Se-Te chalcogenide glass by two step heat-treatment and its effect on the mechanical optical properties and water-resistance were determined. The maximum nuclea-tion and crystal growth rate were 2.1$\times$103/mm3 .min at 28$0^{\circ}C$ and 0.4${\mu}{\textrm}{m}$/min at 33$0^{\circ}C$ respectively. When the crystal volume fraction with crystal size $1.5mutextrm{m}$ was about 4% the (hardness and fracture toughness were about 117kg/mm2 and 6.0 MPa.mm1/2)respectively. The weight loss of crystallized glass in water was lower than parent glass($25^{\circ}C$ for 32 hrs : 0.03% 8$0^{\circ}C$ for 16 hrs : 0.1%) as 0.01% at $25^{\circ}C$, 0.03% at 8$0^{\circ}C$ for 16 hrs : 0.1%) at $25^{\circ}C$ 0.03% at 8$0^{\circ}C$ respectively. The IR-transmittance decreased with increasing crystal size and crystal volume fraction. The IR-transmittance of crystallized glass with the crystal size of $1.5mutextrm{m}$ (crystal volume fraction : 4%) presented 56% which was about 4% lower than that of parent glass.

  • PDF

Flexural strength of indirect composite resin with different polymerization conditions (중합 조건에 따른 간접복합레진의 굴곡강도)

  • Geum, Young-Hee;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.333-341
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the flexural strength of indirect composite resins with different polymerization conditions. Methods: Ten specimens ($2mm{\times}2mm{\times}25mm$) of each composite resins (Tescera (T), Gradia (S) and Sinfony (S)) were fabricated by two polymerization methods : manufacturers's and light heat pressure. Composite resins polymerized by manufacturers's method and light heat pressure served as control (TS, GS and SS) and experimental groups (TE, GE and SE), respectively. The composite resins were tested for flexural strength and the surface of composite resins were observed with scanning electron microscope (SEM) under X1,000 magnification. Results: The flexural strength values of cured composite resin decreased in the following order: TE (195.4MPa), TS (179.8MPa), GE (169.9MPa), SE (137.7MPa), SS (111.1MPa) and GS (100.9MPa) groups. Conclusion: The flexural strength values between the control and the experimental groups were not significantly different although experimental groups showed higher flexural strength values than control groups.

Forward Current Transport Mechanism of Cu Schottky Barrier Formed on n-type Ge Wafer

  • Kim, Se Hyun;Jung, Chan Yeong;Kim, Hogyoung;Cho, Yunae;Kim, Dong-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.151-155
    • /
    • 2015
  • We fabricated the Cu Schottky contact on an n-type Ge wafer and investigated the forward bias current-voltage (I-V) characteristics in the temperature range of 100~300 K. The zero bias barrier height and ideality factor were determined based on the thermionic emission (TE) model. The barrier height increased and the ideality factor decreased with increasing temperature. Such temperature dependence of the barrier height and the ideality factor was associated with spatially inhomogeneous Schottky barriers. A notable deviation from the theoretical Richardson constant (140.0 Acm-2K-2 for n-Ge) on the conventional Richardson plot was alleviated by using the modified Richardson plot, which yielded the Richardson constant of 392.5 Acm-2K-2. Finally, we applied the theory of space-charge-limitedcurrent (SCLC) transport to the high forward bias region to find the density of localized defect states (Nt), which was determined to be 1.46 × 1012 eV-1cm-3.