Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.3.151

Forward Current Transport Mechanism of Cu Schottky Barrier Formed on n-type Ge Wafer  

Kim, Se Hyun (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech))
Jung, Chan Yeong (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech))
Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech))
Cho, Yunae (Department of Physics, Ewha Womans University)
Kim, Dong-Wook (Department of Physics, Ewha Womans University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.3, 2015 , pp. 151-155 More about this Journal
Abstract
We fabricated the Cu Schottky contact on an n-type Ge wafer and investigated the forward bias current-voltage (I-V) characteristics in the temperature range of 100~300 K. The zero bias barrier height and ideality factor were determined based on the thermionic emission (TE) model. The barrier height increased and the ideality factor decreased with increasing temperature. Such temperature dependence of the barrier height and the ideality factor was associated with spatially inhomogeneous Schottky barriers. A notable deviation from the theoretical Richardson constant (140.0 Acm-2K-2 for n-Ge) on the conventional Richardson plot was alleviated by using the modified Richardson plot, which yielded the Richardson constant of 392.5 Acm-2K-2. Finally, we applied the theory of space-charge-limitedcurrent (SCLC) transport to the high forward bias region to find the density of localized defect states (Nt), which was determined to be 1.46 × 1012 eV-1cm-3.
Keywords
Barrier height; Ideality factor; Richardson constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wager and J. Robertson, J. Appl. Phys., 109, 094501 (2011).   DOI   ScienceOn
2 B. Tsui and M. Kao, Appl. Phys. Lett., 103, 032104 (2013).   DOI   ScienceOn
3 V. Janardhanam, I. Jyothi, K. Ahn, and C. Choi, Thin Solid Films, 546, 63 (2013).   DOI   ScienceOn
4 A. Chawanda, W. Mtangi, F. Auret, J. Nel, C. Nyamhere, and M. Diale, Physica B, 407, 1574 (2012).   DOI   ScienceOn
5 S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
6 J. Werner and H. Guttler, J. Appl. Phys., 69, 1522 (1991).   DOI
7 J. Sullivan, R. Tung, M. Pinto, and W. Graham, J. Appl. Phys., 70, 7403 (1991).   DOI
8 R. Tung, Phys. Rev. B, 45, 13509 (1992).   DOI   ScienceOn
9 N. Kwietniewskia, M. Sochacki, J. Szmidt, M. Guziewicz, E. Kaminska, and A. Piotrowska, Appl. Surf. Sci., 254, 8106 (2008).   DOI   ScienceOn
10 A. Saxena, Surf. Sci., 13, 151 (1969).   DOI   ScienceOn
11 M. Mamor, A.Sellai, K.Bouziane, S. AlHarthi, M. AlBusaidi, and F. Gard, J. Phys. D: Appl. Phys., 40, 1351 (2007).   DOI   ScienceOn
12 S. Kumar, R. Arora, and A. Kumar, Physica B, 183, 172 (1993).   DOI
13 Ö. Yüksel, M. Kuş, N. Şimşir, H. Şafak, M. Şahin, and E. Yenel, J. Appl. Phys., 110, 024507 (2011).   DOI   ScienceOn
14 C. Chui, H. Kim, D. Chi, B. Triplett, P. McIntyre, and K. Sarawat, Tech. Dig. - Int. Electron Devices Meet., 464 (2002).   DOI
15 T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, IEEE Electron Device Lett., 26, 102 (2005).   DOI   ScienceOn
16 Z. Li, X. An, Q. Yun, M. Lin. X. Zhang, and R. Huang, ECS Solid State Lett., 1, Q33 (2012).   DOI
17 D. Brunco, B. De Jaeger, G. Eneman, J. Mitard, and G. Hellings, J. Electrochem. Soc., 155, H552 (2008).   DOI   ScienceOn
18 T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett., 91, 123123 (2007).   DOI   ScienceOn
19 J. Lin, A. Roy, A. Nainani, Y. Sun, and K. Saraswat, Appl. Phys. Lett., 98, 092113 (2011).   DOI   ScienceOn
20 Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R. Kawakami, and K. Wang, Appl. Phys. Lett., 96, 102103 (2010).   DOI   ScienceOn
21 T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Exp., 1, 051406 (2008).   DOI
22 Y. Zhou, M. Ogawa, X. Han, and K. Wang, Appl. Phys. Lett., 93, 202105 (2008).   DOI   ScienceOn
23 A. Akkaya, T. Karaaslan, M. Dede, H. Çetin, and E. Ayyıldız, Thin Solid Films, 564, 367 (2014).   DOI   ScienceOn