• 제목/요약/키워드: $Gd_{2}O_{3]$-doped $CeO_2$

검색결과 43건 처리시간 0.028초

Preparation of Ce0.8Gd0.2O1.9 Powder Using CeO2 Powder and Gd Precipitation and Effect of CoO doping on Sintering

  • Sim, Soo-Man
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.521-526
    • /
    • 2015
  • $Ce_{0.8}Gd_{0.2}O_{1.9}$(GDC20) powder was prepared from a mixture of submicron-sized $CeO_2$ powder and Gd precipitates using ammonium carbonate $((NH_4)_2CO_3)$ as a precipitant. The mixture was calcined at $700^{\circ}C$ for 4 h followed by ball-milling that resulted in the GDC powder with an average particle size of $0.46{\mu}m$. The powder had a very uniform particle size distribution with particle sizes ranging from $0.3{\mu}m$ to $1{\mu}m$. Sintering of undoped GDC samples did not show a relative density of 99.2% until the temperature was increased to $1500^{\circ}C$, whereas GDC samples doped with 5 mol% CoO exhibited a significant densification at lower temperature reaching a relative density of 97.6% at $1100^{\circ}C$ and of 98.8% at $1200^{\circ}C$.

An SOFC Cathode Composed of LaNi0.6Fe0.4O3 and Ce(Ln)O2 (Ln=Sm, Gd, Pr)

  • Chiba, Reiichi;Komatsu, Takeshi;Orui, Himeko;Taguchi, Hiroaki;Nazawa, Kazuhiko;Arai, Hajime
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.766-771
    • /
    • 2008
  • We fabricated single cells with a cathode consisting of a $LaNi_{0.6}Fe_{0.4}O_3-Ce_{0.8}Sm_{0.2}O_{1.9}$ composite (LNF-S20DC composite) active layer and an LNF current collecting layer on a ${0.89ZrO_2}-{0.10Sc_2}{O_3}-0.01{Al_2}{O_3}$ electrolyte sheet. The cathode layers were prepared by the screen-printing method. The cathode properties of these cells were measured by the AC impedance method at $800^{\circ}C$. The cathodes with the ceria-LNF composite active layer exhibited high power performance prior to current loading. We investigated the influence of the mixture ratio of LNF and S20DC on the cathodes properties. The Sm in the ceria particles of the composite cathode was substituted with other rare-earth elements. Cathodes with Pr and Gd co-doped ceria in the active layer provided the better performance than those with Sm- or Gd-doped ceria.

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.

Preparation of Proton-Conducting Gd-Doped Barium Cerate by Oxalate Coprecipitation Method

  • Yong Sung Choi;Soo Man Sim
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.213-221
    • /
    • 1998
  • $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder was synthesized by oxalate coprecipitation method. Precipitate with a stoichimetric ratio of the cations was prepared by adding a mixture of Ba, Ce and Gd nitrate solution to an oxalic acid solution at pH 4. Reaction between the constituent oxides to form a perovskite phase was initiated at $800^{\circ}C$ and a single phase $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder having good sinterability was obtained after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1100^{\circ}C$ and resulted in 93% and 97% relative densities at $1300^{\circ}$ and at $1450^{\circ}C$, respectively. Whereas the power compacts prepared by solid state reaction had lower relative densities, 78% at $1300^{\circ}$and 90% at $1450^{\circ}C$. Fine particles of $CeO_2$ second phase were observed in the surface of the sintered compacts. This was attributed to the evaporation of BaO from the surface that had been exposed during thermal etching.

  • PDF

$Gd_24$O_3$-$Y_2$$O_3$-$CeO_2$계 고체 전해질의 미세구조 및 전기전도 특성 (Microstructures and Electrical Conducting Properties of $Gd_24$O_3$-$Y_2$$O_3$-$CeO_2$Solid Electrolyte)

  • 장복기;신동선;임용무
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.44-49
    • /
    • 1999
  • In this study, microstructure and electrical conductivity of {(G $d_2$ $O_3$)$_{0.75}$( $Y_2$ $O_3$)$_{0.25}$}$_{x}$ (Ce $O_2$)$_{1-x}$ (0.01$\leq$x$\leq$0.25) was investigated as a function of composition x. GYO addition(x) increased the bulk density and G $d_2$ $O_3$ was found to be monoclinic at x>0.15. From the change of the lattice parameter with the addition(x), GYO solution limit for ceria was exceeded in the range of x=0.05 to 0.09. Thermal expansion coefficient(15~17$\times$10$^{-6}$ $^{\circ}C$) of GYC samples at x=0.01 to 0.07 was higher in value than that of 8YSZ(10.8$\times$10$^{-6}$ $^{\circ}C$). The electrical conductivity of GYC samples at x=0.05 showed the maximum(0.01S/cm) in value at 1073K which was 2 times higher than that of 8YSZ. The activation energy for the electrical conduction was determined to be 0.60eV in the temperature range of 1073K.3K..3K.

  • PDF

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF

Absence of Distinctively High Grain-Boundary Impedance in Polycrystalline Cubic Bismuth Oxide

  • Jung, Hyun Joon;Chung, Sung-Yoon
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.413-421
    • /
    • 2017
  • In this work, we studied a fluorite structure oxides: Yttria stabilized zirconia, (YSZ); Gd doped $CeO_2$ (GDC); erbia stabilized $Bi_2O_3$ (ESB); Zr doped erbia stabilized $Bi_2O_3$ (ZESB); Ca doped erbia stabilized $Bi_2O_3$ (CESB) in the temperature range of 250 to $600^{\circ}C$ using electrochemical impedance spectroscopy (EIS). As is well known, grain boundary blocking effect was observed in YSZ and GDC. However, there is no grain boundary effect on ESB, ZESB, and CESB. The Nyquist plots of these materials exhibit a single arc at low temperature. This means that there is no space charge effect on ${\delta}-Bi_2O_3$. In addition, impedance data were analyzed by using the brick layer model. We indirectly demonstrate that grain boundary ionic conductivity is similar to or even higher than bulk ionic conductivity on cubic bismuth oxide.

La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향 (Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells)

  • 임진혁;정화영;정훈기;지호일;이종호
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.