DOI QR코드

DOI QR Code

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells

La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향

  • Lim, Jinhyuk (Center for High Temperature Energy Materials Research, Korea Institute of Science and Technology) ;
  • Jung, Hwa Young (Center for High Temperature Energy Materials Research, Korea Institute of Science and Technology) ;
  • Jung, Hun-Gi (Center for High Temperature Energy Materials Research, Korea Institute of Science and Technology) ;
  • Ji, Ho-Il (Center for High Temperature Energy Materials Research, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Center for High Temperature Energy Materials Research, Korea Institute of Science and Technology)
  • 임진혁 (고온에너지재료연구센터, 한국과학기술연구원) ;
  • 정화영 (고온에너지재료연구센터, 한국과학기술연구원) ;
  • 정훈기 (고온에너지재료연구센터, 한국과학기술연구원) ;
  • 지호일 (고온에너지재료연구센터, 한국과학기술연구원) ;
  • 이종호 (고온에너지재료연구센터, 한국과학기술연구원)
  • Received : 2018.11.23
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Keywords

References

  1. Wachsman, E. D.Lee, K. T., "Lowering the Temperature of Solid Oxide Fuel Cells", Science 334 935-939 (2011) https://doi.org/10.1126/science.1204090
  2. Minh, N. Q., "Ceramic Fuel Cells", Journal of the American Ceramic Society 76 563-588 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. Brett, D. J.; Atkinson, A.; Brandon, N. P.Skinner, S. J., "Intermediate Temperature Solid Oxide Fuel Cells", Chemical Society Reviews 37 1568-1578 (2008) https://doi.org/10.1039/b612060c
  4. Leng, Y.; Chan, S.; Jiang, S.Khor, K., "Low- Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction", Solid State Ionics 170 9-15 (2004) https://doi.org/10.1016/j.ssi.2004.02.026
  5. Duan, Z.; Yang, M.; Yan, A.; Hou, Z.; Dong, Y.; Chong, Y.; Cheng, M.Yang, W., "$Ba_{0.5}sr_{0.5}co_{0.8}fe_{0.2}O_{3-{\delta}}$ as a Cathode for IT-SOFCS with a GDC Interlayer", Journal of Power Sources 160 57-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.092
  6. Lee, D.-S.; Kim, W.; Choi, S.; Kim, J.; Lee, H.-W. Lee, J.-H., "Characterization of $ZrO_2$ Co-Doped with $Sc_2O_3\;and\;CeO_2$ Electrolyte for the Application of Intermediate Temperature Sofcs", Solid State Ionics 176 33-39 (2005) https://doi.org/10.1016/j.ssi.2004.07.013
  7. Haering, C.; Roosen, A.; Schichl, H.Schnoller, M., "Degradation of the Electrical Conductivity in Stabilised Zirconia System: Part II: Scandia-Stabilised Zirconia", Solid State Ionics 176 261-268 (2005) https://doi.org/10.1016/j.ssi.2004.07.039
  8. Badwal, S.; Ciacchi, F.Milosevic, D., "Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation", Solid State Ionics 136 91-99 (2000)
  9. Wang, W. G.Mogensen, M., "High-Performance Lanthanum-Ferrite-Based Cathode for SOFC", Solid State Ionics 176 457-462 (2005) https://doi.org/10.1016/j.ssi.2004.09.007
  10. Murray, E. P.; Sever, M.Barnett, S., "Electrochemical Performance of (La, Sr)(Co, Fe) $O_3$-(Ce, Gd) $O_3$ Composite Cathodes", Solid State Ionics 148 27-34 (2002) https://doi.org/10.1016/S0167-2738(02)00102-9
  11. Maguire, E.; Gharbage, B.; Marques, F.Labrincha, J., "Cathode Materials for Intermediate Temperature SOFCs", Solid State Ionics 127 329-335 (2000) https://doi.org/10.1016/S0167-2738(99)00286-6
  12. Tu, H.; Takeda, Y.; Imanishi, N.Yamamoto, O., "$Ln_{0.4}Sr_{0.6}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (Ln=La, Pr, Nd, Sm, Gd) for the Electrode in Solid Oxide Fuel Cells", Solid State Ionics 117 277-281 (1999) https://doi.org/10.1016/S0167-2738(98)00428-7
  13. Shiono, M.; Kobayashi, K.; Nguyen, T. L.; Hosoda, K.; Kato, T.; Ota, K.Dokiya, M., "Effect of $CeO_2$ Interlayer on $ZrO_2$ Electrolyte/La(Sr) $CoO_3$ Cathode for Low-Temperature SOFCs", Solid State Ionics 170 1-7 (2004) https://doi.org/10.1016/j.ssi.2004.02.018
  14. Mai, A.; Haanappel, V. A.; Uhlenbruck, S.; Tietz, F.Stover, D., "Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition", Solid State Ionics 176 1341-1350 (2005) https://doi.org/10.1016/j.ssi.2005.03.009
  15. Kindermann, L.; Das, D.; Nickel, H.Hilpert, K., "Chemical Compatibility of the $LaFeO_3$ Base Perovskites $(La_{0.6}Sr_{0.4})_{Z}Fe_{0.8}M_{0.2}O_{3-{\delta}}$ (Z= 1, 0.9; M= Cr, Mn, Co, Ni) with Yttria Stabilized Zirconia", Solid State Ionics 89 215-220 (1996) https://doi.org/10.1016/0167-2738(96)00366-9
  16. Murata, K.; Fukui, T.; Abe, H.; Naito, M.Nogi, K., "Morphology Control of La(Sr)Fe(Co)$O_3$- a Cathodes for It-SOFCs", Journal of Power Sources 145 257-261 (2005) https://doi.org/10.1016/j.jpowsour.2004.12.063
  17. Mai, A.; Haanappel, V. A.; Tietz, F.Stover, D., "Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part II. Influence of the Cgo Interlayer", Solid State Ionics 177 2103-2107 (2006) https://doi.org/10.1016/j.ssi.2005.12.010
  18. Wang, F.; Nishi, M.; Brito, M. E.; Kishimoto, H.; Yamaji, K.; Yokokawa, H.Horita, T., "Sr and Zr Diffusion in LSCF/10GDC/8YSZ Triplets for Solid Oxide Fuel Cells (SOFCs)", Journal of Power Sources 258 281-289 (2014) https://doi.org/10.1016/j.jpowsour.2014.02.046
  19. Lu, Z.; Darvish, S.; Hardy, J.; Templeton, J.; Stevenson, J.Zhong, Y., "$SrZrO_3$ Formation at the Interlayer/Electrolyte Interface During $(La_{1-X}Sr_{x})_{1-{\delta}}Co_{1-y}\;Fe_{y}O_3$ Cathode Sintering", Journal of The Electrochemical Society 164 F3097-F3103 (2017) https://doi.org/10.1149/2.0141710jes
  20. Finsterbusch, M.; Lussier, A.; Schaefer, J.Idzerda, Y., "Electrochemically Driven Cation Segregation in the Mixed Conductor $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$", Solid State Ionics 212 77-80 (2012) https://doi.org/10.1016/j.ssi.2012.02.006
  21. Jung, H. Y.; Hong, K.-S.; Kim, H.; Park, J.-K.; Son, J.-W.; Kim, J.; Lee, H.-W.Lee, J.-H., "Characterization of Thin-Film Ysz Deposited Via EB-PVD Technique in Anode-Supported SOFCs", Journal of The Electrochemical Society 153 A961-A966 (2006) https://doi.org/10.1149/1.2186209
  22. Jung, H.; Kim, W.-S.; Choi, S.-H.; Kim, H.-C.; Kim, J.; Lee, H.-W.Lee, J.-H., "Effect of Cathode Current-Collecting Layer on Unit-Cell Performance of Anode-Supported Solid Oxide Fuel Cells", Journal of Power Sources 155 145-151 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.015
  23. Tsoga, A.; Gupta, A.; Naoumidis, A.Nikolopoulos, P., "Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for Sofc Technology", Acta Materialia 48 4709-4714 (2000) https://doi.org/10.1016/S1359-6454(00)00261-5
  24. Sakai, N.; Hashimoto, T.; Katsube, T.; Yamaji, K.; Negishi, H.; Horita, T.; Yokokawa, H.; Xiong, Y. P.; Nakagawa, M.Takahashi, Y., "Miscibility Gap in $CeO_{2}-ZrO_{2}-YO_{1.5}$ System as an Electrode of Solid Oxide Fuel Cell", Solid State Ionics 143 151-160 (2001) https://doi.org/10.1016/S0167-2738(01)00855-4
  25. Mitsuyasu, H.; Nonaka, Y.Eguchi, K., "Analysis of Solid State Reaction at the Interface of Yttria-Doped Ceria/Yttria-Stabilized Zirconia", Solid State Ionics 113 279-284 (1998)