• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,683, Processing Time 0.043 seconds

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method (전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성)

  • Lee, Seung-Byung;Cho, Seung-Hyun;Park, Sun-Il;Lee, Wan-Jin;Lee, Yun-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • $LiFePO_4$ material was synthesized by electrospinning method to obtain optimal particle size($50{\sim}100\;nm$) without carbon coating or ball milling. This material showed an orthorthombic structure with Pnma space group without any impurities, such as FeP or $Fe_2P$, in the XRD pattern. The particle morphology and particle shape were observed by SEM analysis. Li/$LiFePO_4$ cell showed a high initial discharge capacity of 135 mAh/g, at current density of $0.1\;mA/cm^2$ with a cut-off voltage of 2.8 to 4.0V. This cell exhibited a perfect cycle performance over 99.9% cycle retention rate up to 50 cycles.

Removal of SO2 over Binary Nb/Fe Mixed Oxide Catalysts (이성분계 Nb/Fe 혼합산화물 촉매에 의한 아황산가스의 제거)

  • Chung, Jong Kook;Lee, Seok Hee;Park, Dae Won;Woo, Hee Chul
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The reduction of $SO_2$ to elemental sulfur by CO over a series of iron niobate with nominal Nb/Fe atomic ratios of 1/0, 10/1, 5/1, 1/1, 1/5, 1/10 and 0/1 was studied with a flow fixed-bed reactor. Strong synergistic phenomena in catalytic activity and selectivity were observed for the iron niobate catalysts, and the best catalytic performance was observed for the catalyst with Fe/Nb atomic ratio of 1/1. The active phase of the activated iron niobate catalysts was identified to be $FeS_2$ using XRD and XPS. Selective reduction of $SO_2$ by CO was followed by the COS intermediate mechanism.

  • PDF

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Characteristics of perovskite-structure Sr(Ti1-xFex)O3 thick film gas sensors (페롭스카이트 구조 Sr(Ti1-xFex)O3 후막 가스센서의 특성)

  • Jin, Guang-Hu;Lee, Woon-Young;Lee, Hyun-Gyu;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.456-461
    • /
    • 2009
  • Perovskite-structure $Sr(Ti_{1-x}Fe_x)O_3$ thick films, in which x is 0.4 or 0.6, were prepared by normal ceramic process on alumina substrate. Electrical resistance was measured as a function of thermal treatment condition including atmosphere, time, and temperature. The resistance of $Sr(Ti_{1-x}Fe_x)O_3$ films is lower than those of $SrTiO_3$ or $SrFeO_3$ films. The temperature coefficient of resistance over $550^{\circ}C$ was measured to be 0 for the $Sr(Ti_{1-x}Fe_x)O_3$ films after thermal treatment at $1100^{\circ}C$ in air. The sensing property of the films was also measured as a function of temperature and gas such as $O_2$, CO, $CO_2$, NO and $NO_2$. $Sr(Ti_{1-x}Fe_x)O_3$ films showed a good sensing property for $O_2$, but no sensing signal for CO, $CO_2$, NO and $NO_2$.

Crystallization and Magnetic Properties of Iron Doped ZnO Diluted Magnetic Semicondutor (철을 미량 치환한 ZnO 희박자성반도체의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Park, Seung-Iel;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.92-95
    • /
    • 2005
  • $Zn_{1-x}\;^{57}Fe_xO(x=0.01, 0.02, 0.03)$ compounds were fabricated using the solid-state reaction method. In order to determine magnetic behavior and ionic state of the doped transition metal ($^{57}Fe$) in ZnO, we carried out $M\ddot{o}ssbauer$ measurements at various temperatures ranging from 13 to 295 K. $M\ddot{o}ssbauer$spectra for $Zn_{0.97}\;^{57}Fe_{0.03}O$ at 4.2 K have shown the ferromagnetic phase (sextet), but the only paramagnetic phase (doublet) is seen at 295 K. The hysteresis loop below 77 K for $Zn_{0.97}\;^{57}Fe_{0.03}O$ indicated the coexistence of ferromagnetic and paramagnetic phases.

Removal of Iron Bearing Minerals from Illite (일라이트에 함유된 Fe 불순물 제거)

  • Kim, Yun-Jong;Cho, Sung-Baek;Park, Hyun-Hae;Kim, Sang-Bae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.497-502
    • /
    • 2006
  • Recently, many attention have been focused on illite as a material for the well-being industry. Illite contains various kinds of iron bearing materials and they restrict their usage. In this study, Fe impurities in the illite produced in Yeongdong-gun, Chungcheongbuk-do were characterized and their removal experiments were performed. According to the characterization of illite raw ore, it contained 1.54 wt.%$Fe_2O_3$ due to the existence of iron oxide($Fe_2O_3$) and pyrite($FeS_2$). The raw ore was crushed into 3 mm or less using cone crusher and then ground by rod mill for the liberation of impurity mineral. For the removal of iron bearing minerals, an acid treatment, a flotation, a magnetic separation, and a flotation combined with magnetic separator were performed respectively. When the illite raw ore was treated with magnetic separation and various kinds of acid, 1.54wt.%. $Fe_2O_3$ content was reduced to 0.78 and 1.0 wt.%, respectively. On the other hand $Fe_2O_3$ content was reduced to be 0.52 wt.% after flotation. These results indicate that iron bearing minerals cannot be reduced below 0.3wt.%$Fe_2O_3$. However, combination of magnetic separation and flotation enable us to get 0.24wt.% of illite concentrate. It is concluded that, for the refinement of illite from Yeongdong-gun, the flotation combined with magnetic separation is good for high purity illite.

Hydrogen Storage and Release by Redox Reaction of Fe/Zr/Mo Mixed Oxide Mediums (Fe/Zr/Mo 혼합 산화물 매체의 Redox 반응을 이용한 수소 저장 및 방출)

  • Je, Han-Sol;Kang, Eun-Jee;Lee, Su-Gyung;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • Hydrogen storage and release of Fe/Zr/Mo mixed oxide mediums were investigated by hydrogen reduction and water splitting oxidation($Fe_3O_4+4H_2{\rightleftharpoons}3Fe+4H_2O$). As the results of TPR/O, Mo was an additive to enhance the reactivity of water splitting oxidation as well as the stability of the medium. On the other hand, it seemed that $ZrO_2$ additive provided the passway for the diffusion of gaseous chemicals on the medium in repeated redox cycles. Among the Fe/Zr/Mo mediums, a FeZrMo-7 medium (Fe/Zr/Mo=80/13/7mol%) exhibited the best performance with good durability during five repeated redox cycles. The amount of hydrogen evolved on the medium was maintained at ca. 10.7mmol-$H_2$/g-medium corresponding to the hydrogen storage amount of ca. 2.2wt%.

Gallium(III) Nitrate Inhibits Pathogenic Vibrio splendidus Vs by Interfering with the Iron Uptake Pathway

  • Song, Tongxiang;Zhao, Xuelin;Shao, Yina;Guo, Ming;Li, Chenghua;Zhang, Weiwei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.973-983
    • /
    • 2019
  • It is well known that iron is critical for bacterial growth and pathogenic virulence. Due to chemical similarity, $Ga^{3+}$ competes with $Fe^{3+}$ for binding to compounds that usually bind $Fe^{3+}$, thereby interfering with various essential biological reactions. In our present study, gallium(III) nitrate [$Ga(NO_3)_3$] could repress the growth of V. splendidus Vs without complete inhibition. In the presence of $Ga(NO_3)_3$, the secretion of homogentisic acid-melanin (HGA-melanin) in V. splendidus Vs cells could be increased by 4.8-fold, compared to that in the absence of $Ga(NO_3)_3$. HGA-melanin possessed the ability to reduce $Fe^{3+}$ to $Fe^{2+}$. In addition, HGA-melanin increased the mRNA levels of feoA and feoB, genes coding Fe2+ transport system proteins to 1.86- and 6.1-fold, respectively, and promoted bacterial growth to 139.2%. Similarly, the mRNA expression of feoA and feoB was upregulated 4.11-fold and 2.71-fold in the presence of $640{\mu}M$ $Ga(NO_3)_3$, respectively. In conclusion, our study suggested that although $Ga(NO_3)_3$ could interfere with the growth of V. splendidus Vs, it could also stimulate both the production of $Fe^{3+}$-reducing HGA-melanin and the expression of feoA and feoB, which facilitate $Fe^{2+}$ transport in V. splendidus Vs.