Browse > Article
http://dx.doi.org/10.4283/JKMS.2014.24.3.071

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal  

Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
Yoon, Dal Hoo (Department of Laser and Optical Information Engineering, Cheongju University)
Lee, Soo Hyung (Department of Laser and Optical Information Engineering, Cheongju University)
Abstract
Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.
Keywords
$BiVO_4$ single crystal; $Fe^{3+}$ ion; electron paramagnetic resonance; energy level;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids, 28, 1685 (1967).   DOI   ScienceOn
2 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, New York and Dover (1970 and 1986).
3 C. Rudowicz, Magnetic Res. Rev. 13, 1 (1987); Erratum: 13, 335 (1988).
4 S. K. Misra and C. Rudowicz, Phys. Status Solidi B 147, 677 (1988).   DOI
5 S. Matsumura, J. Cryst. Growth, 51, 41 (1981).   DOI   ScienceOn
6 H. Chen, H. Xia, J. Wang, J. Zhang, J. Xu, and S. Fan, J. Cryst. Growth, 256, 219 (2003).   DOI   ScienceOn
7 D. W. Rudd and A. A. Ballman, Solid State Technology, January, 52 (1974).
8 S. W. Ahn, J. S. Kim, S. H. Choh, and T. H. Yeom, J. Korean Phys. Soc. 27, 535 (1994).
9 S. H. Choh, T. H. Yeom, and S. W. Ahn, Bull. Mag. Resonance, 17, 198 (1995).
10 T. H. Yeom, S. W. Ahn, and S. H. Choh, J. Korean Phys. Soc. 29, 107 (1996).
11 T. H. Yeom J. Phys.: Condens. Matter 13, 10471 (2001).   DOI   ScienceOn
12 H. Sothe, L. G. Rowan, and J.-M. Spaeth, J. Phys.: Condens. Matter 1, 3591 (1989).   DOI   ScienceOn
13 S. G. Min, T. H. Yeom, S. H. Lee, M. K. Lee, H. K. Shin, Y. M. Yu, T. H. Kim, and S. C. Yu, J. Korean Magn. Soc. 13, 171 (2003).   DOI   ScienceOn
14 E. Kratzig and O. F. Schimer, in Photo-refractive Materials and Their Applications (Edited by P. Gunter and J. P. Huingnard), Topics in Applied Physics, 61, Springer, Berlin (1988) P. 131.   DOI
15 B. T. Matthias and J. P. Remeika, Phys. Rev. 76, 1886 (1949).
16 C. Y. Chen, K. L. Sweeney, and L. E. Halliburton, Phys. Stat. Sol. 81, 253 (1984).   DOI   ScienceOn
17 S. C. Abrahams, E. Buehler, C. Hamilton, and S. J. Laplaca, J. Phys. Chem. Solids 34, 521 (1973).   DOI   ScienceOn
18 S. C. Abrahams, J. M. Reddy, and J.L. Bernstein, J. Chem. Phys. Solids 27, 997 (1966).   DOI   ScienceOn
19 M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon press, Oxford (1977).
20 H. Kurz, E. Kratzig, W. K. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977).   DOI
21 F. Mehran and B. A. Scott, Solid State Commun. 11, 15 (1972).   DOI   ScienceOn
22 A. P. Pechney, Sov. Phys. Solid State, 27, 923 (1985).
23 E. Kratzig and R. Orlowski, Opt. Quant. Elect. 12, 495 (1980).   DOI   ScienceOn
24 A. A. Ballman, J. Am. Ceram. Soc. 48, 112 (1965).   DOI
25 S. C. Abrahams and J. L. Bernstein, J. Phys. Chm. Solids 28, 1685 (1967).   DOI   ScienceOn
26 S. C. Abrahams, W. C. Hamilton, and A. Sequeira, J. Phys. Chem. Solids 28, 1693 (1967).   DOI   ScienceOn
27 E. Kratzig and R. Orlowski, Appl. Phys. 15, 133 (1978).   DOI   ScienceOn