DOI QR코드

DOI QR Code

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal

LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산

  • Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Yoon, Dal Hoo (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Soo Hyung (Department of Laser and Optical Information Engineering, Cheongju University)
  • 염태호 (청주대학교 레이저광정보공학과) ;
  • 윤달호 (청주대학교 레이저광정보공학과) ;
  • 이수형 (청주대학교 레이저광정보공학과)
  • Received : 2014.06.09
  • Accepted : 2014.06.19
  • Published : 2014.06.30

Abstract

Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.

정비조성으로 성장시킨 $LiTaO_3$ 단결정 및 비정비조성으로 성장시킨 $LiTaO_3$ 단결정 내에 불순물로 도핑된 $Fe^{3+}$ 상자성 불순물 이온의 바닥 상태에서의 에너지 준위를 계산하였다. $LiTaO_3$ 단결정 내에서 육방정계 대칭성을 갖는 $Fe^{3+}$ 이온의 전자 상자성 공명 상수인 분광학적 분리인자 g 및 영자기장 갈라지기 D 값을 이용하여 6개의 에너지 준위 사이의 에너지 준위를 계산하였다. 자기장을 결정학적 주축 ([100], [001], [111])과 나란하게 가하여 자기장을 증가시켜 감에 따라 얻은 에너지 준위 갈라지기는 자기장을 가한 방향에 따라서 서로 다른 값을 나타내었다. ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ >및 ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > 사이의 전이에서 계산한 영자기장 갈라지기 값은 정비조성으로 성장시킨 $LiTaO_3$ 단결정과 비정비조성으로 성장시킨 단결정의 경우에 각각 12.300 GHz, 6.150 GHz와 59.358 GHz, 29.679 GHz이다. 결정성장 조건에 따라 에너지 준위가 상당히 다른 것으로 나타났다.

Keywords

References

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon press, Oxford (1977).
  2. E. Kratzig and R. Orlowski, Appl. Phys. 15, 133 (1978). https://doi.org/10.1007/BF00928197
  3. H. Kurz, E. Kratzig, W. K. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, Appl. Phys. 12, 355 (1977). https://doi.org/10.1007/BF00886038
  4. F. Mehran and B. A. Scott, Solid State Commun. 11, 15 (1972). https://doi.org/10.1016/0038-1098(72)91120-9
  5. A. P. Pechney, Sov. Phys. Solid State, 27, 923 (1985).
  6. E. Kratzig and R. Orlowski, Opt. Quant. Elect. 12, 495 (1980). https://doi.org/10.1007/BF00619922
  7. A. A. Ballman, J. Am. Ceram. Soc. 48, 112 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb11814.x
  8. S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids, 28, 1685 (1967). https://doi.org/10.1016/0022-3697(67)90142-4
  9. S. Matsumura, J. Cryst. Growth, 51, 41 (1981). https://doi.org/10.1016/0022-0248(81)90006-3
  10. H. Chen, H. Xia, J. Wang, J. Zhang, J. Xu, and S. Fan, J. Cryst. Growth, 256, 219 (2003). https://doi.org/10.1016/S0022-0248(03)01361-7
  11. D. W. Rudd and A. A. Ballman, Solid State Technology, January, 52 (1974).
  12. S. W. Ahn, J. S. Kim, S. H. Choh, and T. H. Yeom, J. Korean Phys. Soc. 27, 535 (1994).
  13. S. H. Choh, T. H. Yeom, and S. W. Ahn, Bull. Mag. Resonance, 17, 198 (1995).
  14. T. H. Yeom, S. W. Ahn, and S. H. Choh, J. Korean Phys. Soc. 29, 107 (1996).
  15. T. H. Yeom J. Phys.: Condens. Matter 13, 10471 (2001). https://doi.org/10.1088/0953-8984/13/46/315
  16. H. Sothe, L. G. Rowan, and J.-M. Spaeth, J. Phys.: Condens. Matter 1, 3591 (1989). https://doi.org/10.1088/0953-8984/1/23/004
  17. S. G. Min, T. H. Yeom, S. H. Lee, M. K. Lee, H. K. Shin, Y. M. Yu, T. H. Kim, and S. C. Yu, J. Korean Magn. Soc. 13, 171 (2003). https://doi.org/10.4283/JKMS.2003.13.4.171
  18. E. Kratzig and O. F. Schimer, in Photo-refractive Materials and Their Applications (Edited by P. Gunter and J. P. Huingnard), Topics in Applied Physics, 61, Springer, Berlin (1988) P. 131. https://doi.org/10.1007/3-540-18332-9_32
  19. B. T. Matthias and J. P. Remeika, Phys. Rev. 76, 1886 (1949).
  20. S. C. Abrahams and J. L. Bernstein, J. Phys. Chm. Solids 28, 1685 (1967). https://doi.org/10.1016/0022-3697(67)90142-4
  21. S. C. Abrahams, W. C. Hamilton, and A. Sequeira, J. Phys. Chem. Solids 28, 1693 (1967). https://doi.org/10.1016/0022-3697(67)90143-6
  22. C. Y. Chen, K. L. Sweeney, and L. E. Halliburton, Phys. Stat. Sol. 81, 253 (1984). https://doi.org/10.1002/pssa.2210810127
  23. S. C. Abrahams, E. Buehler, C. Hamilton, and S. J. Laplaca, J. Phys. Chem. Solids 34, 521 (1973). https://doi.org/10.1016/0022-3697(73)90047-4
  24. S. C. Abrahams, J. M. Reddy, and J.L. Bernstein, J. Chem. Phys. Solids 27, 997 (1966). https://doi.org/10.1016/0022-3697(66)90072-2
  25. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, New York and Dover (1970 and 1986).
  26. C. Rudowicz, Magnetic Res. Rev. 13, 1 (1987); Erratum: 13, 335 (1988).
  27. S. K. Misra and C. Rudowicz, Phys. Status Solidi B 147, 677 (1988). https://doi.org/10.1002/pssb.2221470226