Browse > Article
http://dx.doi.org/10.4014/jmb.1903.03008

Gallium(III) Nitrate Inhibits Pathogenic Vibrio splendidus Vs by Interfering with the Iron Uptake Pathway  

Song, Tongxiang (School of Marine Sciences, Ningbo University)
Zhao, Xuelin (School of Marine Sciences, Ningbo University)
Shao, Yina (School of Marine Sciences, Ningbo University)
Guo, Ming (School of Marine Sciences, Ningbo University)
Li, Chenghua (School of Marine Sciences, Ningbo University)
Zhang, Weiwei (School of Marine Sciences, Ningbo University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.6, 2019 , pp. 973-983 More about this Journal
Abstract
It is well known that iron is critical for bacterial growth and pathogenic virulence. Due to chemical similarity, $Ga^{3+}$ competes with $Fe^{3+}$ for binding to compounds that usually bind $Fe^{3+}$, thereby interfering with various essential biological reactions. In our present study, gallium(III) nitrate [$Ga(NO_3)_3$] could repress the growth of V. splendidus Vs without complete inhibition. In the presence of $Ga(NO_3)_3$, the secretion of homogentisic acid-melanin (HGA-melanin) in V. splendidus Vs cells could be increased by 4.8-fold, compared to that in the absence of $Ga(NO_3)_3$. HGA-melanin possessed the ability to reduce $Fe^{3+}$ to $Fe^{2+}$. In addition, HGA-melanin increased the mRNA levels of feoA and feoB, genes coding Fe2+ transport system proteins to 1.86- and 6.1-fold, respectively, and promoted bacterial growth to 139.2%. Similarly, the mRNA expression of feoA and feoB was upregulated 4.11-fold and 2.71-fold in the presence of $640{\mu}M$ $Ga(NO_3)_3$, respectively. In conclusion, our study suggested that although $Ga(NO_3)_3$ could interfere with the growth of V. splendidus Vs, it could also stimulate both the production of $Fe^{3+}$-reducing HGA-melanin and the expression of feoA and feoB, which facilitate $Fe^{2+}$ transport in V. splendidus Vs.
Keywords
Vibrio splendidus Vs; $Ga(NO_3)_3$ inhibition; iron uptake; HGA-melanin-mediated $Fe^{2+}$ uptake;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Turick CE, Jr CF, Tisa LS. 2008. Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron. Can. J. Microbiol. 54: 334-339.   DOI
2 Stojiljkovic I, Cobeljic M, Hantke K. 1993. Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS. Microbiol. Lett. 108: 111-115.   DOI
3 Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3: 59.
4 Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I. 1996. Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect. Immun. 64: 4549-4556.   DOI
5 Mey AR, Wyckoff EE, Vanamala K, Fisher CR, Payne SM. 2005. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect. Immun. 73: 8167-8178.   DOI
6 Song TX, Liu HJ, Lv TT, Zhao XL, Shao YN, Han QX, et al. 2018. Characteristics of the iron uptake-related process of a pathogenic Vibrio splendidus strain associated with massive mortalities of the sea cucumber Apostichopus japonicus. J. Invertebr. Pathol. 155: 25-31.   DOI
7 Ross-Gillespie A, Weigert M, Brown SP, Kummerli R. 2014. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol. Med. Public Health 1: 18-19.   DOI
8 Rodriguez GM, Gardner R, Kaur N, Phanstiel IVO. 2008. Utilization of $Fe^{3+}$-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Biometals 21: 93-103.   DOI
9 Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol. Microbiol. 31: 429-442.   DOI
10 Minandri F, Bonchi C, Frangipani E, Imperi F, Visca P. 2014. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 9: 379-397.   DOI
11 Kaneko Y, Thoendel M, Olakanmi O, Britiganet BE, Singh PK. 2007. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117: 877-888.   DOI
12 Deleon K, Balldin F, Watters C, Hamood A, Griswold J, Sreedharan S, et al. 2009. Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrob. Agents Chemother. 53: 1331-1337.   DOI
13 Chitambar CR. 2016. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 1863: 2044-2053.   DOI
14 Zhang WW, Liang WK, Li CH. 2016. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. J. Hazard. Mater. 302: 217-224.   DOI
15 Mitchell G. Thompson, Vu Truong-Le, Yonas A. Alamneh. 2015. Evaluation of gallium citrate formulations against a multidrug-resistant strain of Klebsiella pneumoniae in a murine wound model of infection. Antimicrob. Agents Chemother. 59: 6484-6493.   DOI
16 Harrington JR, Martens RJ, Cohen ND, Bernstein LR. 2006. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo. J. Vet. Pharmacol. Ther. 29: 121-127.
17 Fecteau ME, Aceto HW, Bernstein LR, Sweeney RW. 2014. Comparison of the antimicrobial activities of gallium nitrate and gallium maltolate against Mycobacterium avium subsp. paratuberculosis in vitro. Vet. J. 202: 195-197.   DOI
18 Oyebode Olakanmi, Banurekha Kesavalu, Rajamouli Pasula, et al. Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob. Agents Chemother. 57: 6074-6080.   DOI
19 Xu ZR, Zhao X, Chen XD, Chen Z, Xia ZF. 2017. Antimicrobial effect of gallium nitrate against bacteria encountered in burn wound infections. Rsc. Adv. 7: 52266-52273.   DOI
20 Emery T. 1971. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10: 1483-1488.   DOI
21 Leong J, Neilands JB, Raymond KN. 1974. Coordination isomers of biological iron transport compounds III. (1) Transport of $\lambda$-cis-chromic desferriferrichrome by Ustilago sphaerogena. Biochem. Biophys. Res. Commun. 60: 1066-1071.   DOI
22 Payne SM. 1994. Detection, isolation, and characterization of siderophores, Methods Enzymol. 235: 329-344.   DOI
23 Zhu S, Lu Y, Xu X, Chen J, Yang J, Ma X. 2015. I solation and identification of a gene encoding 4-hydroxyphenylpyruvate dioxygenase from the red-brown pigment-producing bacterium Alteromonas stellipolaris LMG 21856. Folia Microbiol. 60: 1-8.   DOI
24 Chatfield CH, Cianciotto NP. 2007. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect. Immun. 75: 4062-4070.   DOI
25 Brewster JD. 2003. A simple micro-growth assay for enumerating bacteria. J. Microbiol. Methods 53: 77-86.   DOI
26 Zhang WW, Sun K, Cheng S, Sun L. 2008. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain. Appl. Environ. Microbiol. 74: 6254-6262.   DOI
27 Torresi M, Acciari VA, Piano A, Serratore P, Prencipe V, Migliorati G. 2011. Detection of Vibrio splendidus and related species in Chamelea gallina sampled in the Adriatic along the Abruzzi coastline. Vet. Ital. 47: 371-378.
28 Olakanmi O, Britigan BE, Schlesinger LS. 2000. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect. Immun. 68: 5619-5627.   DOI
29 Yabuuchi E, Omyama A. 1972. Characterization of "pyomelanin"-producing strains of Pseudomonas aeruginosa. Int. J. Syst. Bacteriol. 22: 53-64.   DOI
30 Aranda J, Cortes P, Garrido ME, Fittipaldi N, Llagostera M, Gottschalk M, et al. 2009. Contribution of the FeoB transporter to Streptococcus suis virulence. Int. Microbiol. 12: 137-143.
31 David C, Daro A, Szalai E, Atarhouch T, Mergeay M. 1996. Formation of polymeric pigments in the presence of bacteria and comparison with chemical oxidative coupling-II. Catabolism of tyrosine and hydroxyphenylacetic acid by Alcaligenes eutrophus CH34 and mutants. Eur. Polym. J. 32: 669-697.   DOI
32 Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI
33 Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, et al. 2008. The potential of desferrioxaminegallium as an anti-pseudomonas therapeutic agent. Proc. Natl. Acad. Sci. USA 105: 16761-6766.   DOI
34 Menon S, Jr WH, Tsan MF. 1978. Studies on gallium accumulation in inflammatory lesions: II. Uptake by Staphylococcus aureus: concise communication. J. Nucl. Med. 19: 44-47.
35 Ogunnariwo J, Hamiltonmiller JM. 1975. Brown- and redpigmented Pseudomonas aeruginosa: differentiation between melanin and pyorubrin. J. Med. Microbiol. 8: 199-203.   DOI
36 Coon SL, Kotob S, Jarvis BB, Fuqua WC, Weiner RM. 1994. Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl. Environ. Microbiol. 60: 3006-3010.   DOI
37 Zughaier SM, Ryley HC, Jackson SK. 1999. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect. Immun. 67: 908-913.   DOI
38 Antunes LCS, Imperi F, Minandri F, Visca P. 2012. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 56: 5961-5970.   DOI
39 Turick CE, Beliaev AS, Zakrajsek BA, Reardon CL, Lowy DA, Poppy TE, et al. 2009. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1. FEMS. Microbiol. Ecol. 68: 223-235.   DOI
40 Steinert M, Flügel M, Schuppler M, Helbig JH, Supriyono A, Proksch P, et al. 2001. The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS. Microbiol. Lett. 203: 41-47.   DOI
41 Zhang CY, Wang YG, Rong XJ. 2006. Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. J. Fish. Sci. China 30: 118-123.
42 Kirchman DL, Meon B, Cottrell MT, Hutchins DA, Weeks D, Bruland KW. 2000. Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnol. Oceanogr. 45: 1681-1688.   DOI
43 Larson JA, Higashi DL, Stojiljkovic I, So M. 2002. Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect. Immun. 70: 1461-1467.   DOI
44 Mendez P, Perez-Pascual R, Gomez D, Guijarro JA. 2012. An overview of virulence-associated factors of gram-negative fish pathogenic bacteria. Health. Environ. 5: 133-156.
45 Sritharan M. 2000. Iron as a candidate in virulence and pathogenesis in mycobacteria and other microorganisms. World. J. Microiol. Biotechnol. 16: 769-780.   DOI
46 Raymond KN, Carrano CJ. 1979. Coordination chemistry and microbial iron transport. Accounts Chem. Res. 12: 183-190.   DOI
47 Wandersman C, Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611-647.   DOI
48 Han QX, Keesing JK, Liu DY. 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Rev. Fish. Sci. Aquac. 24: 326-341.   DOI
49 Li Z, Zhang JC, L i X, Wang XY, Cao ZH, Wang LL, Xu YP. 2016. Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus. Aquac. 451: 345-352.   DOI
50 Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. 2006. Feo--transport of ferrous iron into bacteria. Biometals 19: 143-157.   DOI
51 Robey M, Cianciotto NP. 2002. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect. Immun. 70: 5659-5669.   DOI
52 Zheng H X, C hatfield C H, L iles M R, C ianciotto NP. 2013. Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect. Immun. 81: 4182-4191.   DOI