• Title/Summary/Keyword: $Cr/TiO_2$

Search Result 278, Processing Time 0.02 seconds

Occurrence and Chemical Composition of Ti-bearing Minerals from Samgwang Au-ag Deposit, Republic of Korea (삼광 금-은 광상에서 산출되는 함 티타늄 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.195-214
    • /
    • 2020
  • The Samgwang Au-Ag deposit has been one of the largest deposits in Korea. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. The Ti-bearing minerals occur in wallrock (titanite, ilmenite and rutile) and laminated quartz vein (rutile). They occur minerals including biotite, muscovite, chlorite, white mica, monazite, zircon, apatite in wallrock and white mica, chlorite, arsenopyrite in laminated quartz vein. Chemical composition of titanite has maximum vaules of 3.94 wt.% (Al2O3), 0.49 wt.% (FeO), 0.52 wt.% (Nb2O5), 0.46 wt.% (Y2O3) and 0.43 wt.% (V2O5). Titanite with 0.06~0.14 (Fe/Al ratio) and 0.06~0.15 (XAl (=Al/Al+Fe3++Ti)) corresponds with metamorphic origin and low-Al variety. Chemical composition of ilmenite has maximum values of 0.07 wt.% (ZrO2), 0.12 wt.% (HfO2), 0.26 wt.% (Nb2O5), 0.04 wt.% (Sb2O5), 0.13 wt.% (Ta2O5), 2.62 wt.% (As2O5), 0.29 wt.% (V2O5), 0.12 wt.% (Al2O3) and 1.59 wt.% (ZnO). Chemical composition of rutile in wallrock and laminated quartz vein has maximum values of 0.35 wt.%, 0.65 wt.% (HfO2), 2.52 wt.%, 0.19 wt.% (WO3), 1.28 wt.%, 1.71 wt.% (Nb2O3), 0.03 wt.%, 0.07 wt.% (Sb2O3), 0.28 wt.%, 0.21 wt.% (As2O5), 0.68 wt.%, 0.70 wt.% (V2O3), 0.48 wt.%, 0.59 wt.% (Cr2O3), 0.70 wt.%, 1.90 wt.% (Al2O3) and 4.76 wt.%, 3.17 wt.% (FeO), respectively. Rutile in laminated quartz vein is higher contents (HfO2, Nb2O3, As2O5, Cr2O3, Al2O3 and FeO) and lower content (WO3) than rutile in wallrock. The substitutions of rutile in wallrock and laminated quatz vein are as followed : rutile in wallrock [(Fe3+, Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + V4+, 2Fe2+ + (Al3+, Cr3+) + Hf4+ + (W5+, As5+, Nb5+) ⟵⟶ 2Ti4+ + 2V4+], rutile in laminated quartz vein [(Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + V4+, (Fe3+, Al3+) + As5+ ⟵⟶ Ti4+ + Hf4+, 4(Fe3+, Al3+) ⟵⟶ Ti4+ + (W5+, Nb5+) + Cr3+], respectively. Based on these data, titanite, ilmenite and rutile in wallrock were formed by resolution and reconcentration of cations (W5+, Nb5+, As5+, Hf4+, V4+, Cr3+, Al3+, Fe3+, Fe2+) in minerals of wallrock during regional metamorphism. And then rutile in laminated quartz vein was formed by reconcentration of cations (Nb5+, As5+, Hf4+, Cr3+, Al3+, Fe3+, Fe2+) in alteration minerals (white mica, chlorite) and Ti-bearing minerals reaction between hydrothermal fluid originated during ductile shear and Ti-bearing minerals (titanite, ilmenite and rutile) in wallrock.

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

Piezoelectric and Electrical Characteristics of PMN-PZT Ceramics With Addition of Cr (Cr이 첨가된 PMN-PZT 세라믹스의 압전 및 전기적특성)

  • 장낙원;이두희;백동수;이개명;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.20-23
    • /
    • 1991
  • In this study, 0.05Pb(Mn$\_$1/3/Nb$\_$2/3/)O$_3$+ 0.95Pb(Zr/Ti)O$_3$+x[wt%]Cr$_2$O$_3$piezoelectric ceramics were fabricated by Hot-press method, and its structural, dielectrical, piezoelectrical properties, temperature stability and aging characteristics were investigated. Among the MPB and tetragonal compositions, the specimens with 0.2, 0.3 and 0.4 [wt%] Cr$_2$O$_3$ additive amount had the poisson ratio more than 1/3. At tetragonal phase, the aging was small, and the temperature stability was improved by Cr addition. The specimen most suitable to the HF device substrate was the one with the composition of 47/53 (Zr/Ti) an 0.4 [wt%] Cr$_2$O$_3$addition.

Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy (플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성)

  • Chae, Young-Hun;Ren, Jing-Ri;Park, Jun-Mock;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1) (M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1))

  • Bae, Sang-Won;Kim, Hyun-Gyu;Ji, Sang-Min;Jang, Jum-Suk;Jeong, Euh-Duck;Hong, Suk-Joon;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production (광량 및 TiO2 나노튜브 길이별 광활성 연구: Cr(VI)환원 및 수소제조)

  • Joo, Hyun-Ku;Shim, Eun-Jung;Lee, Jae-Min;Yoon, Jae-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.

The Preparation of $Pb(Zr_{0.52} Ti_{0.48})O_3$ Powders by a Chemical Method (화합물 침전법에 의한 $Pb(Zr_{0.52} Ti_{0.48})O_3$ 분말제조에 관한 연구)

  • 신동우;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.37-41
    • /
    • 1985
  • Several $Al_2O_3$-based polycrystalline which had different dopant ratio in the range of 0.5mol% were prepared by doping pure $Cr_2O_3$, $ZrO_2$, $HfO_3$ Single crystalline which had same composition with above polycrystalline were made by means of floating zone method. This study examined the role of each dopant for enhancing the mefchanical properties of $Al_2O_3$-based Ceramics. Optical micrographs $({\times}200)$ of $Al_2O_3-Cr_2O_3$ single crystal showing not only radial crack (rc) on the specimen surface but median crack (mc) and lateral crack (lc) under surface at the edge of indentation mark. Fracture toughness of $Al_2O_3$-based Ceramics was increased with $ZrO_2$ content. Alloying effect of $Cr_2O_3$ contributed to the hardness of $Al_2O_3$ based ceramics.

  • PDF