Browse > Article
http://dx.doi.org/10.7316/khnes.2011.22.4.432

Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production  

Joo, Hyun-Ku (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Shim, Eun-Jung (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Lee, Jae-Min (Dept. of Chemical and Biomolecular. Engr., Yonsei Univ.)
Yoon, Jae-Kyung (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.22, no.4, 2011 , pp. 432-442 More about this Journal
Abstract
Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.
Keywords
Anodization; Immobilized titania; Photoanode; Ecomaterials; Cr(VI) reduction; Hydrogen;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 X. Wang, S. O. Pehkonen, A. K. Ray, "Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation", Ind. Eng. Chem. Res., Vol. 43, 2004, pp. 1665-1672.   DOI   ScienceOn
2 O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, "High-rate solar photocatalytic conversion of $CO_{2}$ and water vapor to hydrocarbon fuels", Nano Lett., Vol. 9, 2009, pp. 731-737.   DOI   ScienceOn
3 M. Park, A. Heo, E. Shim, J. Yoon, H. Joo, "Effect of length of anodized $TiO_{2}$ tubes on photoreactivity: Photocurrent, Cr(VI) reduction and $H_{2}$ evolution", J. Power Sources, Vol. 195, 2010, pp. 5144-5149.   DOI   ScienceOn
4 S. Lawniczak, P. Lecomte, J. Ehrhardt, "Behavior of hexavalent chromium in a polluted groundwater: Redox processes and immobilization in soils", Environ. Sci. Technol., Vol. 35, 2001, pp. 1350-1357.   DOI   ScienceOn
5 M. A. Schlautman, I. Han, "Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems", Wat. Res., Vol. 35, 2001, pp. 1534-1546.   DOI   ScienceOn
6 F. O. Bryant, M.W.W Adams, "Characterization of hydrogenase from the hyperthermophilic archaebacterium pyrococcus furiosus", J. Biol. Chem., Vol. 264, 1983, pp. 5070-5079.
7 V. Osokov, B. Kebbekus, D. Chesbro, "Field determination of Cr(VI) in water at low ppb level", Anal. Lett. Vol. 29, 1996, pp. 1829-1850.   DOI   ScienceOn
8 S. Bae, E. Shim, J. Yoon, H. Joo, "Enzymatic hydrogen production by light-sensitized anodized tubular $TiO_{2}$ photoanode", Sol. Energy Mater. Sol. Cells, Vol. 92, 2008, pp. 402-409.   DOI   ScienceOn
9 S. Bae, J. Kang, E. Shim, J. Yoon, H. Joo, "Correlation of electrical and physical properties of photoanode with hydrogen evolution in enzymatic photo-electrochemical cell", J. Power Sources, Vol. 179, 2008, pp. 863-869.   DOI   ScienceOn
10 S. Bae, E. Shim, J. Yoon, H. Joo, "Photoanodic and cathodic role of anodized tubular titania in light-sensitized enzymatic hydrogen production", J. Power Sources, Vol. 185, 2008, pp. 439-444.   DOI   ScienceOn
11 E. Shim, Y. Park, S. Bae, J. Yoon, H. Joo, "Phtocurrent by anodized $TiO_{2}$ photoelectrode for enzymatic hydrogen production and chromium( VI) reduction", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 5193-5198.   DOI   ScienceOn
12 G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheese, C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett. Vol. 5, 2005, pp. 191-195.   DOI   ScienceOn
13 허아영 외, "금속담지된 $TiO_{2}$ 나노튜브를 활용한 Cr(VI)환원의 광화학적 효율연구", 한국수소 및 신에너지학회 논문집, Vol. 21, 2010, pp 301-306.
14 심은정 외, "광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp. 151-156.
15 배상현 외, "광어노드 수소 제조와 광전기 특성에 관한 상관관계 연구", 한국수소 및 신에너지학회 논문집, Vol. 18, 2007, pp 244-249.
16 M. Paulose, G. K. Mor, O. K. Vargheese, K. Shankar, C. A. Grimes, "Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays", J. Photochem. Photobiol. A: Chem. Vol. 178, 2006, pp. 8-15.   DOI   ScienceOn
17 K. S. Raja, V. K. Mahajan, M. Misra, "Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation", J. Power Sources Vol. 159, 2006, pp. 1258-1265.   DOI   ScienceOn
18 M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, M. Anpo, "Photocatalytic water splitting using Pt-loaded visible light-responsive $TiO_{2}$ thin film photocatalysts", Catalysis Today, Vol. 120, 2007, pp. 133-138.   DOI   ScienceOn
19 J. Yoon, E. Shim, S. Bae, H Joo, "Application of immobilized nanotubular $TiO_{2}$ electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI)) in water", J. Hazard. Mater. Vol. 161, 2009, pp. 1069-1074.   DOI
20 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, "Titanium dioxide nanotube arrays prepared by anodic oxidation", J. Mater. Res. Vol. 16, 2001, pp. 3331-3337.   DOI   ScienceOn
21 J. P. Best and D. E. Dunstan, "Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 7562-7578.   DOI   ScienceOn
22 O.K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, "Crystallization and hightemperature structural stability of titanium oxide nanotube arrays", J. Mater. Res. Vol. 18, 2003, pp. 156-162.   DOI
23 G. K. Mor, O. K. Vargheese, M. Paulose, N. Mukherjee, C. A. Grimes, "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res. Vol. 18, 2003, pp. 2588-2593.   DOI   ScienceOn
24 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, Vol. 238, 1972, pp. 237-38.   DOI
25 X. Chen, S Shen, L. Guo, S. S. Mao, "Semiconductor- based photocatalytic hydrogen generation", Chem. Rev. Vol. 110, 2010, pp. 6503-6570.   DOI   ScienceOn
26 M. Ashokkumar, "An overview on semicondutor particulate systems for photoproduction of hydrogen", Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 427-438.   DOI   ScienceOn