DOI QR코드

DOI QR Code

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors

도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화

  • Yun, Su-Won (School of Mechanical Engineering, Pusan National University) ;
  • Song, Hannah (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
  • 윤수원 (부산대학교 기계공학부 에너지시스템전공) ;
  • 송한나 (부산대학교 기계공학부 에너지시스템전공) ;
  • 김용태 (부산대학교 기계공학부 에너지시스템전공)
  • Received : 2014.11.14
  • Accepted : 2015.02.01
  • Published : 2015.02.28

Abstract

$Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

$Li_4Ti_5O_{12}$는 우수한 안정성으로 자동차용 리튬 이온 이차전지의 음극 활물질로서 각광 받고 있다. 그러나 넓은 밴드갭에 기인한 절연체 특성으로 고율 충/방전을 가능하게 하기 위해서는 전자 전도도의 개선이 필수적이다. 본 연구에서는 Cr 도핑을 통해 $Li_4Ti_5O_{12}$의 전자 전도도 개선을 목표로 하였으며, wet-mixing법을 통한 물질 합성시 도판트인 Cr 프리커서의 용해도 차이에 의한 Cr-doped $Li_4Ti_5O_{12}$의 전기화학적 특성 변화를 고찰하고자 하였다. 시료의 물리적 특성은 ICP, XRD, SEM, EXAFS을 통하여 확인하였고 1.0V~3.0V (vs. $Li/Li^+$) 하에서 충/방전 특성을 조사하였다. 프리커서의 용해도는 합성된 물질의 상(phase) 및 모폴로지에 큰 영향을 미쳤으며, 가장 용해도가 높은 $Cr(NO_3)_2$ 프리커서로부터 합성된 경우 Bare $Li_4Ti_5O_{12}$와 비교하여 약 2배 개선된 고율 충/방전 특성(130 mAh/g @ 10 C)을 확인하였다.

Keywords

References

  1. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, 'A review of advanced and practical lithium battery materials', J. of Mater. Chem., 21, 9938 (2011). https://doi.org/10.1039/c0jm04225k
  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy & Environmental Science, 4, 9, 3243 (2011). https://doi.org/10.1039/c1ee01598b
  3. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, 'Synthesis of single crystalline spinel $LiMn_2O_4$ nanowires for a lithium ion battery with high power density', Nano lett., 9, 1045 (2009). https://doi.org/10.1021/nl803394v
  4. T. Ohzuku, and Y. Makimura, 'Layered Lithium Insertion Material of $LiNi_{1/2}Mn_{1/2}O_2$: A Possible Alternative to $LiCoO_2$ for Advanced Lithium-Ion Batteries', Chemistry Lett., 8, 744 (2001).
  5. T. Ohzuku, A. Ueda, and N. Yamamoto, 'Zero Strain Insertion Material of Li [$Li_{1/3}Ti_{5/3}$]$O_4$ for Rechargeable Lithium Cells', J. of the Electrochem. Soc., 142, 1431 (1995). https://doi.org/10.1149/1.2048592
  6. W. Lu, I. Belharouak, J. Liu, and K. Amine, 'Electrochemical and Thermal Investigation of $Li_{4/3}Ti_{5/3}O_4$ Spinel', J. of The Electrochem. Soc., 154, A114 (2007). https://doi.org/10.1149/1.2402117
  7. A. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode', Chemistry of Materials, 22, 2857 (2010). https://doi.org/10.1021/cm100071z
  8. L. Zhao, Y. S. Hu, H. Li, Z. Wang, and L. Chen, 'Porous $Li_4Ti_5O_{12}$ Coated with N-Doped Carbon from Ionic Liquids for LiIon Batteries', Advanced Materials, 23, 1385 (2011). https://doi.org/10.1002/adma.201003294
  9. Y. J. Hao, Q.-Y. Lai, J. Z. Lu, and X. Y. Ji, 'Effects of dopant on the electrochemical properties of $Li_4Ti_5O_{12}$ anode materials', Ionics, 13, 369 (2007). https://doi.org/10.1007/s11581-007-0111-1
  10. S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, and Z. Tang, 'Preparation and effects of Mg-doping on the electrochemical properties of spinel $Li_4Ti_5O_{12}$ as anode material for lithium ion battery', Materials chemistry and physics, 123, 510 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.006
  11. D. Capsoni, M. Bini, V. Massarotti, P. Mustarelli, S. Ferrari, G. Chiodelli, M. C. Mozzati, and P. Galinetto, 'Cr and Ni doping of $Li_4Ti_5O_{12}$: cation distribution and functional properties', The Journal of Physical Chemistry C, 113, 19664 (2009). https://doi.org/10.1021/jp906894v
  12. H. Song, S. W. Yun, H. H. Chun, M. G. Kim, K. Y. Chung, H. S. Kim, B. W. Cho, and Y. T. Kim, 'Anomalous decrease in structural disorder due to charge redistribution in Cr-doped $Li_4Ti_5O_{12}$ negative-electrode materials for high-rate Li-ion batteries', Energy & Environmental Science, 5, 9903 (2012). https://doi.org/10.1039/c2ee22734g
  13. K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries', J. of the Electrochem. Soc., 145, 3135 (1998). https://doi.org/10.1149/1.1838776
  14. P. P. Prosini, R. Mancini, L. Petrucci, V. Contini, and P. Villano, '$Li_4Ti_5O_{12}$ as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications', Solid State Ionics, 144, 185 (2001). https://doi.org/10.1016/S0167-2738(01)00891-8
  15. J. B. Kim, D. J. Kim, K. Y. Chung, D. Byun, and B. W. Cho, 'Research on carbon-coated $Li_4Ti_5O_{12}$ material for lithium ion batteries', Physica Scripta, 2010, 014026 (2010).
  16. Y. Hao, Q.-Y. Lai, D. Liu, Z.-U. Xu, and X. Ji, 'Synthesis by citric acid sol-gel method and electrochemical properties of $Li_4Ti_5O_{12}$ anode material for lithium-ion battery', Mat. Chem. and Phys., 94, 382, (2005). https://doi.org/10.1016/j.matchemphys.2005.05.019
  17. C.-M. Shen, X.-G. Zhang, Y.-K. Zhou, and H.-L. Li, 'Preparation and characterization of nanocrystalline $Li_4Ti_5O_{12}$ by sol-gel method', Mat. chem. and phys., 78, 437 (2003). https://doi.org/10.1016/S0254-0584(02)00225-0
  18. Y. Li, G. Pan, J. Liu, and X. Gao, 'Preparation of $Li_4Ti_5O_{12}$ nanorods as anode materials for lithium-ion batteries', J. of the Electrochem. Soc., 156, A495 (2009). https://doi.org/10.1149/1.3121216
  19. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode', Chem. of Mat., 22, 2857 (2010). https://doi.org/10.1021/cm100071z
  20. D. Jugovi', and D. Uskokovi', 'A review of recent developments in the synthesis procedures of lithium iron phosphate powders', J. of Power Sources, 190, 538 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.074
  21. M. M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, 'Effect of surface carbon structure on the electrochemical performance of $LiFePO_4$' Electrochemical and solidstate lett., 6, A207 (2003). https://doi.org/10.1149/1.1601372
  22. H. Y. Xu, H. Wang, Z. Q. Song, Y. W. Wang, H. Yan, and M. Yoshimura, 'Novel chemical method for synthesis of $LiV_3O_8$ nanorods as cathode materials for lithium ion batteries', Electrochimica Acta, 49, 349 (2004). https://doi.org/10.1016/j.electacta.2003.08.017
  23. V. Murugan, T. Muraliganth, and A. Manthiram, 'Comparison of microwave assisted solvothermal and hydrothermal syntheses of $LiFePO_4$/C nanocomposite cathodes for lithium ion batteries', The J. of Phys. Chem. C, 112, 14665 (2008).
  24. Ahn, S. H. Oh, J. H. Kim, B. W. Cho, and H. S. Kim, 'The effect of vanadium precursors on the electrochemical performance of $Li_{1. 1}V_{0. 9}O_2$ as an anode material for Li-ion batteries', J. of Electroceramics, 32, 390 (2014). https://doi.org/10.1007/s10832-014-9930-4
  25. M. Kalbe, M. Zukalov & L. Kavan, 'Phase-pure nanocrystalline $Li_4Ti_5O_{12}$ for a lithium-ion battery', J. of Solid State Electrochem., 8, 2 (2003). https://doi.org/10.1007/s10008-003-0415-7
  26. T. Ohzuku, A. Ueda, and N. Yamamoto, 'Zero Strain Insertion Material of Li [$Li_{1/3}Ti_{5/3}$] $O_4$ for Rechargeable Lithium Cells', J. of the Electrochem. Soc., 142, 1431 (1995). https://doi.org/10.1149/1.2048592
  27. R. T. Shannon and C. Prewitt, 'Revised values of effective ionic radii', Acta Crystallographica Section B: Structural Crystallography and Crystal Chem., 26, 1046 (1970). https://doi.org/10.1107/S0567740870003576
  28. J. J. Rehr, R. C. Albers, 'Theoretical approaches to x-ray absorption fine structure', Reviews of Modern Phys., 72, 621 (2000). https://doi.org/10.1103/RevModPhys.72.621
  29. K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, 'Electrochemical study of $Li_4Ti_5O_{12}$ as negative electrode for Li-ion polymer rechargeable batteries', J. of Power Sources, 81, 300 (1999).