• Title/Summary/Keyword: $CoFe_2O_4$

Search Result 784, Processing Time 0.027 seconds

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ (활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2013
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

Formation of $FeAl_2O_4$ in $H_2-CO_2$ and its behavior in $CO_2$(I) ($H_2-CO_2$에서 $FeAl_2O_4$의 생성기구와 $CO_2$ 중에서의 거동(I))

  • 이홍림;강명구
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 1982
  • $FeAl_2O_4$ was formed from the starting material of $Fe_2O_3$ and $Al_2O_3$ by controlling the oxygen partial pressure using $H_2-CO_2$ gas mixture, over the temperature range of 800~120$0^{\circ}C$. The formation mechanism of $FeAl_2O_4$ was found to be a second order chemical reaction, and the activation energy of formation was observed as 39.97 kcal/mole. Vaporization behavior of $FeAl_2O_4$ under $CO_2$ atmosphere was observed over the temperature range of 800~120$0^{\circ}C$. $FeAl_2O_4$ was vaporized by a second order chemical reaction and the activation energy was found to be 21.8kcal/mole. Electrical conductivity of $FeAl_2O_4$ was also measured.

  • PDF

Electrical Conductivity of the Spinel CoFe$_2O_4$ Solid Solution

  • Lee, Doo-Yeon;Kim, Don;Kim, Keu-Hong;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.333-337
    • /
    • 1988
  • Spinel $CoFe_2O_4$ solid solutions containing up to 50 mol% CoO were synthesized with spectroscopically pure CoO and ${\alpha}-Fe_2O_3$ polycrystalline powders. The spinel structures of the $CoFe_2O_4$ solid solutions were analyzed from XRD patterns and the Mossbauer spectra showed that the quenched $CoFe_2O_4$ had a partially inversed spinel structure ($Co_{0.23}Fe_{0.77}$) < $Co_{0.77}Fe_{1.23}$ > $O_4$, while the slowly cooled $CoFe_2O_4$ was completely inversed spinel ($Co_{0.04}Fe_{0.96}$) <$Co_{0.96}Fe_{1.04}$ > $O_4$. The $CoFe_2O_4$ specimens containing 10, 20, 30 and 40 mol% CoO turned to be a mixture of corundum and spinel structures. Electrical conductivities were measured as a function of temperature from 300 to $900^{\circ}C$ under oxygen partial pressures from $10^{-3}$ to 1 atm. The temperature dependencies of the electrical conductivity show different behaviors in the low- and high-temperature regions. The average activation energies are 0.23 eV and 0.80 eV in the low- and high-temperature regions, respectively. It is suggested that $Co^{2+} {\to} CO^{3+} + e^-$ and $Fe^{2+} {\rightleftharpoons} Fe^{3+} + e^-$ are the main conduction mechanisms responsible for the electronic conduction in the low- and high-temperature regions, respectively.

Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application (에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing (금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서)

  • Lee, Soo-Min;Kim, Tae-Hyun;Jo, Young-Moo;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.

The influence of Co and Fe on the color change of diopside crystals (Co, Fe가 diopside 결정색 변화에 미치는 영향)

  • Byeon, Soo Min;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.183-189
    • /
    • 2014
  • This study was conducted to study the influence of Co and Fe on the color of glaze and diopside crystals in the diopside crystal glaze empirically produced and used by ceramic artists, in case of adding $Co_3O_4$ and $Fe_2O_3$. As a result, the color of glaze was blue when $Co_3O_4$ was added to the diopside crystal glaze and the diopside crystals appeared pastel violet with Co included. When $Fe_2O_3$ was added to the diopside crystal glaze, the color of glaze appeared brown and the color of diopside crystals was goldenrod with Fe included. The crystals precipitated on the surface of diopside consisted of diopside crystals and diopside precursors. With longer retention time, the amount of diopside precursors decreased and the amount of diopside crystals increased. Also, Co was more easily included by the diopside crystals than Fe was and crystallizability of dispside was improved in case of including Co. Including Fe lowered peak intensity of properties and partially dissolved the diopside crystals.

$Fe_2O_3$ Aggregation and Sintering of Ba-Ferrite ($Fe_2O_3$ 응집상태와 Ba-Ferrite의 소결성)

  • Hyo-Duk Nam;Sang-Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.318-324
    • /
    • 1981
  • The effects of$ Fe_2O_3$ aggregation on the sintering of Ba-ferrite (BaFe$_{12}O_{19}$) were studied. $BaCO_3-Fe_2O_3$ mixtures were prepared by partial precipitation mixing and ball-mill mixing method using two different $Fe_2O_3 $powders. Techniques employed were TG, XRD and SEM. X-ray diffraction analysis showed that the over all reaction basically consists of the two consecutive reaction; $BaCO_3 + 6Fe_2O_3\;{\longrightarrow}\;BaFe_2O_3 + 5Fe_2O_3 + CO_2{\uparrow}\;BaFe_2O_4 + 5Fe_2O_3 \;{\longrightarrow}\;BaFe_{12}O_{19}$ It is also shown that the aggregation state of $Fe_2O_3$ raw materials, as well as the mixing method, has a remarkable effect on solid state reaction between $BaCO_3\;and\;Fe_2O_3$.

  • PDF

Synthesis and Characterization of CoFe2O4/SiO2 using Cobalt Precursors from Recycling Waste Cemented Carbide (폐 초경합금에서 추출된 Co를 이용한 CoFe2O4/SiO2 합성 및 특성평가)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.454-457
    • /
    • 2011
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$, particles using recycled $Co_3O_4$ and their surface coating with silica using micro emulsion method. Firstly, the $Co_3O_4$ powders were separated from waste cemented carbide with acid-base chemical treatment. The cobalt ferrite nanoparticles with the size 10 nm are prepared by thermal decomposition method using recycled $Co_3O_4$. $SiO_2$ was coated onto the $CoFe_2O_4$ particles by the micro-emulsion method. The $SiO_2$-coated $CoFe_2O_4$ particles were studied their physical properties and characterized by X-ray diffraction (XRD), high resolution-transmission electron microscopy (TEM) analysis and CIE Lab value.