Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.7.371

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method  

Choi, Seung Han (Department of Biomedical Engineering, Daegu Haany University)
Publication Information
Korean Journal of Materials Research / v.28, no.7, 2018 , pp. 371-375 More about this Journal
Abstract
The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.
Keywords
cobalt ferrite; sol-gel method; $M{\ddot{o}}ssbauer$ spectroscopy; coercivity; saturation magnetization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, p.261, Chapman and Hall Ltd., London (1971).
2 V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Muñoz and M. Mikhove, J. Magn. Magn. Mater., 162, 331 (1996).   DOI
3 A. Goldman, Modern Ferrite Technology, p.217, Van Nostrand Reinhold, New York, (1990).
4 A. S. Albaguergye, J. D. Ardisson and W. A. A. Macedo, J. Appl. Phys., 87, 4352 (2000).   DOI
5 T. Abraham, Am. Ceram. Soc. Bull., 73, 62 (1994).
6 P. I. Slick, in: E. P. Wohlfrath(Ed.), Ferromagnetic materials, Vol. 2, p.196, North-Holland, Amsterdam, (1980).
7 V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson and C. E. Johson, J. Magn. Magn. Mater., 125, 199 (1993).   DOI
8 J. G. Lee, J. Y. Park and C. S. Kim. J. Mater. Sci., 53, 3965 (1998).
9 B. D. Cullity, Elements of X-Ray Diffraction, p.102, Addition Wesley Co. (1978).
10 K. Maaz, Arif Mumtaz, S.K. Hasanain and Abdullah Ceylan, J. Magn. Magn. Mater., 308, 289 (2007).   DOI
11 K. P. Chae, W. O. Choi, J. K. Lee, B. S. Kang and S. H. Choi, J. Magn., 18, 21 (2013).   DOI
12 W. O. Choi, W. H. Kim, K. P. Chae and Y. B. Lee, J. Magn., 21, 40 (2016).   DOI
13 M. Z. Schmalzrifd. J. Phys. Chem., 28, 203 (1961).
14 R. K. Datta and B. Roy, J. Am. Ceram. Soc., 50, 578 (1967).   DOI
15 M. K. Shobana, S. Sankar and V. Rayendran, Mater. Chem. Phys., 113, 10 (2009).   DOI