Browse > Article
http://dx.doi.org/10.11629/jpaar.2017.3.31.033

Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application  

Lee, Chongmin (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Particle and aerosol research / v.13, no.1, 2017 , pp. 33-40 More about this Journal
Abstract
Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.
Keywords
aerosol spray pyrolysis; $CoFe_2O_4$; nanoparticles; graphene; supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Y., Hasin, P., & Wu, Y. (2010). $NixCo_{3−x}O_4$ nanowire arrays for electrocatalytic oxygen evolution. Advanced materials, 22(17), 1926-1929.   DOI
2 Rai, A. K., Gim, J., Anh, L. T., & Kim, J. (2013). Partially reduced $Co_3O_4$/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochimica Acta, 100, 63-71.   DOI
3 Liu, M. C., Kong, L. B., Lu, C., Li, X. M., Luo, Y. C., & Kang, L. (2012). A sol–gel process for fabrication of $NiO/NiCo_2O_4/Co_3O_4$ composite with improved electrochemical behavior for electrochemical capacitors. ACS applied materials & interfaces, 4(9), 4631-4636.   DOI
4 Soofivand, F., & Salavati-Niasari, M. (2015). $Co_3O_4$/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures. RSC Advances, 5(79), 64346-64353.   DOI
5 Yermakov, A. Y., Boukhvalov, D. W., Uimin, M. A., Lokteva, E. S., Erokhin, A. V., & Schegoleva, N. N. (2013). Hydrogen Dissociation Catalyzed by Carbon‐Coated Nickel Nanoparticles: Experiment and Theory. ChemPhysChem, 14(2), 381-385.   DOI
6 Sun, Z., & Lu, X. (2012). A solid-state reaction route to anchoring $Ni(OH)_2$ nanoparticles on reduced graphene oxide sheets for supercapacitors. Industrial & Engineering Chemistry Research, 51(30), 9973-9979.   DOI
7 Wang, W. N., Jiang, Y., & Biswas, P. (2012). Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. The journal of physical chemistry letters, 3(21), 3228-3233.   DOI
8 Xia, K., Gao, Q., Jiang, J., & Hu, J. (2008). Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 46(13), 1718-1726.   DOI
9 Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.   DOI
10 Chen, H., Hu, L., Chen, M., Yan, Y., & Wu, L. (2014). Nickel-Cobalt Layered Double Hydroxide Nanosheets for High‐performance Supercapacitor Electrode Materials. Advanced Functional Materials, 24(7), 934-942.   DOI
11 Mastragostino, M., Arbizzani, C., & Soavi, F. (2002). Conducting polymers as electrode materials in supercapacitors. Solid state ionics, 148(3), 493-498.   DOI
12 Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., & Lou, X. W. D. (2012). Recent advances in metal oxidebased electrode architecture design for electrochemical energy storage. Advanced materials, 24(38), 5166-5180.   DOI
13 Xu, J., Gao, L., Cao, J., Wang, W., & Chen, Z. (2010). Preparation and electrochemical capacitance of cobalt oxide ($Co_3O_4$) nanotubes as supercapacitor material. Electrochimica Acta, 56(2), 732-736.   DOI
14 Zhi, M., Xiang, C., Li, J., Li, M., & Wu, N. (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1), 72-88.   DOI
15 Xiao, Y., Li, X., Zai, J., Wang, K., Gong, Y., Li, B., ... & Qian, X. (2014). $CoFe_2O_4$-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Letters, 6(4), 307-315.   DOI
16 Kumbhar, V. S., Jagadale, A. D., Shinde, N. M., & Lokhande, C. D. (2012). Chemical synthesis of spinel cobalt ferrite ($CoFe_2O_4$) nano-flakes for supercapacitor application. Applied Surface Science, 259, 39-43.   DOI
17 Wu, H. B., Pang, H., & Lou, X. W. D. (2013). Facile synthesis of mesoporous $Ni_{0.3}Co_{2.7}O_4$ hierarchical structures for high-performance supercapacitors. Energy & Environmental Science, 6(12), 3619-3626.   DOI
18 Sahoo, S., & Shim, J. J. (2016). Facile Synthesis of Three-Dimensional Ternary $ZnCo_2O_4$/Reduced Graphene Oxide/NiO Composite Film on Nickel Foam for Next Generation Supercapacitor Electrodes. ACS Sustainable Chemistry & Engineering.
19 He, P., Yang, K., Wang, W., Dong, F., Du, L., & Deng, Y. (2013). Reduced graphene oxide-$CoFe_2O_4$ composites for supercapacitor electrode. Russian Journal of Electrochemistry, 49(4), 359-364.   DOI
20 Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131.   DOI
21 Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.   DOI
22 Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., & Dai, H. (2011). $Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials, 10(10), 780-786.   DOI