• 제목/요약/키워드: $C_5$-precursor

검색결과 567건 처리시간 0.025초

이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성 (Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning)

  • 안건형;안효진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.143-148
    • /
    • 2013
  • Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

(hfac)Cu(1,5-DMCOD) 전구체를 이용한 MOCVD Cu 증착 특성에 미치는 환원기체와 첨가제의 영향에 관한 연구 (Reduction Gas and Chemical Additive Effects on the MOCVD Copper Films Deposited From (hfac)Cu(1,5-DMCOD) as a Precursor)

  • 변인재;서범석;양희정;이원희;이재갑
    • 한국재료학회지
    • /
    • 제11권1호
    • /
    • pp.20-26
    • /
    • 2001
  • (hfac)Cu(1, 5-DMCOD)(1, 1, 1, 5, 5, 5-Hexafluoro-2, 4-pentanedionato Cu(I) 1, 5-dimethyl-cyclooctadine) 전구체와 He 운반기체를 이용하여 MOCVD(Metal Organic Chemical Vapor Deposition) 방법으로 Cu 박막을 형성하였으며, He 운반기체와 함께 $H_2$ gas 및 H(hfac) Ligand의 첨가가 Cu 박막 형성에 미치는 영향에 대하여 조사하였다. He운반기체만을 사용한 경우, Cu 박막의 증착율은 기판온도 180~$230^{\circ}C$에서 20~$125{\AA}/min$ 정도로 낮은 값을 보였으며, 특히 기판온도 $190^{\circ}C$에서는 매우 얇은 두께 ($700{\AA}$)이면서 낮은 비저항($2.8{\mu}{\Omega}cm$)을 갖는 Cu 박막이 형성됨을 알 수 있었다 He 운반기체와 함께 환원가스(H$_2$) 및 화학첨가제 (H (hfac) ligand)의 첨가 실험에서는 낮은 기판온도 ($180~190^{\circ}C$) 구간에서 현저하게 증착율이 증가하였으며 얇은 두께 (~$500{\AA}$)의 Cu 박막이 낮은 비저항(3.6~$2.86{\mu}{\Omega}cm$)을 갖는 것으로 나타났다. 또한 얇은 두께의 MOCVD Cu박막들의 표면 반사도(reflectance)는 $300^{\circ}C$에서 열처리한 sputter Cu의 반사도에 근접하는 우수한 surface morphology를 보였다 결국, (hfac)Cu(1,6-DMCOD) 전구체를 이용하여 얻어진 MOCVD Cu박막은 얇은 두께에서 낮은 비저항을 갖는 우수한 막질을 보였으며, Electrochemical deposition공정에서 conformal seed layer로써의 적용이 가능할 것으로 기대된다.

  • PDF

분무 열분해 CVD법으로 이동 중인 LaAlO_3(100) 단결정 위에 증착시킨 YBCO 박막의 특성 (Deposition of YBCO Films on Moving Substrate by a Spray Pyrolysis method)

  • 김재근;홍석관;김호진;유석구;조한우;안지현;주진호;이희균;홍계원
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.93-97
    • /
    • 2006
  • YBCO films were deposited on a moving substrate by a spray pyrolysis method using nitrate aqueous solution as precursors. Deposition was made on $LaAlO_3$(100) single crystal substrate by spraying precursor droplets generated by a concentric nozzle. The cation ratio of precursor solution was Y:Ba:Cu=1:2.65:4.5. The distance between nozzle and substrate was 15 cm. Substrate was transported with a speed ranging from 0.23 cm/min to 0.5 cm/min. Films were deposited at the pressure ranging from 10 Torr to 20 Torr and the deposition temperature was ranged from $740^{\circ}C\;to\;790^{\circ}C$. Oxygen partial pressure was controlled between 1 Tow and S Torr. Superconducting YBCO films were obtained from $740^{\circ}C\;to\;790^{\circ}C$ with an oxygen partial pressure of 3 Torr. Scanning electron microscope(SEM) and X-ray diffraction(XRD) observation revealed that films are smooth and highly texture with(001) plans parallel to substrate plane. Highest Jc was 0.72 $MA/cm^2$ at 77K and self-field for the film with a thickness of 0.15 m prepared at a substrate temperature of $740^{\circ}C$ and $PO_2$=3 Torr.

  • PDF

Nd-Yag 레이저 화학증착을 이용한 SiC 로드 성장에 관한 실험적 연구 (Experimental Study of the Growth of the SiC Rod using Nd-Yag Laser Chemical Vapor Deposition)

  • 이영림;유재은
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.481-488
    • /
    • 2004
  • Laser chemical vapor deposition can be used as a new approach for a rapid prototyping technique. The purpose of the study is to fabricate several 3-dimensional objects that are relatively simple as well as to find the characteristics of SiC rod growth that is the first step in developing a new rapid prototyping technique with laser chemical vapor deposition. In the study, SiC rods were generated with varying precursor pressure for 5 minutes. Deposition rates with varying precursor pressure, shapes of rods, surface roughness and component organization were investigated, in particular. Finally, several simple objects like a branch or a propeller were successfully fabricated using laser chemical vapor deposition.

액상 침투 성장법으로 제조된 $YBa_2Cu_3O_{7-y}$ 벌크 초전도체의 임계전류밀도에 대한 $CeO_2$ 첨가된 $Y_2BaCuO_5$ 분말의 밀링 효과 (Milling Effects of $Y_2BaCuO_5$ Precursor Powder with $CeO_2$ Addition on the Critical Current Density of Liquid Infiltration Growth Processed $YBa_2Cu_3O_{7-y}$ Bulk Superconductors)

  • 아시프 마흐무드;전병혁;김찬중
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.6-11
    • /
    • 2010
  • The milling effects of a precursor $Y_2BaCuO_5$ (Y211) powder having 1 wt.% $CeO_2$ on the microstructure and critical current density ($J_c$) of liquid infiltration growth (LIG) processed $YBa_2Cu_3O_{7-y}$ (Y-123) bulk superconductors were investigated. The microstructure analysis revealed that the Y211 size in the final Y-123 products decreased with increasing the milling time and a relatively high density and uniform distribution of Y211 inclusions were observed in the sample prepared using 8 h milled powder. However, the unexpected Y211 particles coarsening was observed from the 4 h milled sample which was further increased for 10 h milled sample. Critical current density ($J_c$) of the LIG processed Y-123 bulk superconductors was found to be dependent on the milling time of the Y211 precursor powder. The $J_c$ increased with the increase of milling time and reached up to a maximum at 8 h in the self field while 10 h milled sample showed lower $J_c$ at the same field which might be due to the exaggerated growth and non-uniform distribution of Y211 particles.

폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造) (Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge)

  • 장희동;장한권;조국;길대섭
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.41-45
    • /
    • 2007
  • 폐실리콘 슬러지로부터 테트라메틸오쏘실리케이트(TMOS)와 실리카 나노분말을 제조하였다. 먼저, 실리카 나노분말의 전구체인 TMOS를 폐실리콘 슬러지로부터 촉매 화학반응에 의해 합성하였다. TMOS의 합성실험에서 반응온도가 $130^{\circ}C$ 이상에서는 반응시간이 5시간 경과 시 반응온도에 무관하게 100%의 반응율을 나타내었다. 그러나 $150^{\circ}C$ 이상에서는 초기 반응속도가 빨라졌다. 메탄올 주입속도를 0.8 ml/min에서 1.4 ml/min로 증가시에는 3시간 경과 후에는 반응율이 변화하지 않았다. 이와 같이 합성된 TMOS로부터 화염분무열분해법에 의해 실리카 나노분말을 제조하였다. 제조된 실리카 나노분말은 구형이며, 무응집 형태이었다. 평균입자 크기는 전구체의 주입속도 및 농도변화에 따라 9 nm에서 30 nm로 변화하였다.

Oxide precursor-based MOD processing of YBCO thin films

  • Kim, Young-Kuk;Yoo, Jai-Moo;Ko, Jae-Woong;Chung, Kook-Chae;Heo, Soon-Young
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.5-8
    • /
    • 2004
  • A low cost MOD processing using YBCO oxide powder as a starting precursor was employed for fabrication of YBCO thin films. YBCO oxide is advantageous over metal acetates or TFA salts which are popular starting precursors for conventional MOD-TFA process. YBCO thin films were prepared by oxide-precursor-based MOD process and annealing condition was optimized. The YBCO thin film annealed at 78$0^{\circ}C$ shows no transport $I_c$ and poor microstructure. However, the YBCO thin film annealed at higher temperature shows improvement in microstructure and current transport property. In order to improve critical current, YBCO thin film was prepared by double coating method. YBCO thin film prepared with double coating approach shows enhanced superconducting performance ($I_c$>100A/cm-w).

납사분해공정 잔사유로부터 탄소재료용 전구체 핏치의 제조 (Preparatoin of Precursor Pitch for Carbon Applications from Naphtha Cracking Residues)

  • 김명수;김상렬;황종식
    • 한국응용과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.77-87
    • /
    • 1997
  • PFO(pyrolized fuel oil) and $C_{10}^{+}$ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near $300^{\circ}C$ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from $350^{\circ}C$ to $450^{\circ}C$. Spinnable isotropic pitch with the softening point of $200^{\circ}C$ and the toluene insolubles of 36wt% was obtained at $365^{\circ}C$, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of $25{\mu}m$ diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at $400^{\circ}C$, and bulk mesophase with a flow texture was observed above $420^{\circ}C$. In the case of $C_{10}^{+}$ was the feed was polymerized in the presence $H_2SO_4$ at room temperature to increase the molecular weight and then heat-treated gradually up to $200{\sim}250^{\circ}C$. The products obtained with the softening point of $80{\sim}190^{\circ}C$ were carbonized at 500 and $1000^{\circ}C$ to examine the morphology.

Production of human insulin analogue using recombinant Escherichia coli

  • Lee, Ji-Seon;Park, Jin-Guk;Cho, Jung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.34-38
    • /
    • 2003
  • For the production of $B^{30}-homoserine$ insulin analog as a novel anti-diabetic drug, the fermentative study was attempted for the maximal gene expression of HTS-fused $B^{30}-homoserine$ insulin precursor in the recombinant Escherichia coli cells. In a batch fermentation, the maximal production of insulin precursor as much as 38.95 mg/L-h, which occupied more than 12.8% of total cell protein. was achieved when the gene expression was induced by 0.5 mM IPTG at the middle logarithmic growth phase. The HTS-fused $B^{30}-homoserine$ insulin precursor was recovered from a batch culture through the processes of cell harvest, collection of insoluble fraction after sonication and purification by nickel affinity column chromatography. The isolated insulin precursor was 14 mg/L with a recovery yield of 35.9% of expressed gene product. The insulin A and B chain mixture was recovered after the insulin precursor was subjected to CNBr cleavage and purified by nickel affinity column chromatography. The isolated insulin chains were then sulfitolyzed with sodium thiosulfat and sodium tetrathionate, and reconstituted to insulin analog with ${\beta}-mercaptoethanol$, followed by purification with CM-Sepharose C-25 column chromatography.

  • PDF

활성탄소섬유-세라믹복합체의 제조 및 물성 (Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.56-62
    • /
    • 1997
  • 탄화된 PAN 섬유, 페놀수지, 세라믹 결합체를 혼합하여 탄소섬유-세라믹복합체를 제조한 후 활성화시켜 PAN 섬유의 탄화온도에 따른 활성탄소섬유-세라믹복합체의 비표명적과 굽힘 강도변화를 연구하였다. 안정화 PAN 섬유를 80$0^{\circ}C$와 100$0^{\circ}C$에서 각각 탄화시켜 얻은 두 종류의 탄소섬유를 복합체 제작시편의 원료로 사용하였다. 탄소섬유-세라믹복합체를 10~90분간 CO2로 85$0^{\circ}C$에서 활성화시켜 얻은 두 종류의 활성복합체에 대한 물성 측정결과, 80$0^{\circ}C$로 PAN 섬유를 탄화시켜 만든 활성복합체의 burn-off이 37%에서 76%로 증가될 때 비표면적은 493m2/g에서 1090m2/g으로 증가하였으며, 굽힘강도는 4.5 MPa에서 1.4MPa로 감소하였다. 이 값들은 안정화 PAN 섬유의 탄화온도를 100$0^{\circ}C$로하여 활성복합체 시편이 나타내는 값보다 약 2배 정도 큰 값이었다. 비표면적, 굽힘강도 측정결과와 미세조직 관찰결과, PAN 섬유의 탄화온도가 활성복합체의 비표면적과 굽힘강도에 미치는 영향은 활성화시 탄소섬유와 페놀수지탄화체 또는 세라믹 필름간에 발생되는 결합력과 상대적인 수축율에 의해 결정되는 활성복합체의 구조특성에 기인된 것으로 해석하였다.

  • PDF