DOI QR코드

DOI QR Code

Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning

이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성

  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2012.12.24
  • Accepted : 2013.01.18
  • Published : 2013.02.27

Abstract

Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

Keywords

References

  1. H. Zhu, J. Wei, K. Wang and D. Wu, Sol. Energy Mater. Sol. Cells, 93, 1461 (2009). https://doi.org/10.1016/j.solmat.2009.04.006
  2. E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  3. B. Maruyama and K. Alam, SAMPE J., 38, 59 (2002).
  4. A. Aglral, L. Lefferts and J. G. E. (Han) Gardeniers, Catal. Today, 150, 128 (2010). https://doi.org/10.1016/j.cattod.2009.04.023
  5. G. -H. An, S. -Y. Jeong, T. -Y. Seong and H. -J. Ahn, Mater. Lett., 65, 2377 (2011). https://doi.org/10.1016/j.matlet.2011.05.043
  6. D. Li, Y. Wang and Y. Xia, Nano Lett., 3, 1167 (2003). https://doi.org/10.1021/nl0344256
  7. Y. -S. Yeom and H. -J. Ahn, Kor. J. Mater. Res., 21, 419 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.8.419
  8. G. -H. An and H. -J. Ahn, Kor. J. Mater. Res., 22, 421 (2012). https://doi.org/10.3740/MRSK.2012.22.8.421
  9. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004
  10. Z. Dong, S. J. Kennedy and Y. Wu, J. Power Sources, 196, 4886 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.090
  11. B. -S. Lee, S. -B. Son, K. -M. Park, W. -R. Yu, K. -H. Oh and S. -H. Lee, J. Power Sources, 199, 53 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.030
  12. C. -M. Chuang, C. -W. Huang, H. Teng and J. -M. Ting, Compos. Sci. Tech., 72, 1524 (2012). https://doi.org/10.1016/j.compscitech.2012.05.024
  13. Y. Yu, Q. Yang, D. Teng, X. Yang and S. Ryu, Electrochem. Commun., 12, 1187 (2010). https://doi.org/10.1016/j.elecom.2010.06.015
  14. Z. Yang, G. Du, Z. Guo, X. Yu, S. Li, Z. Chen, P. Zhang and H. Liu, Nanoscale, 2, 1011 (2010). https://doi.org/10.1039/c0nr00009d
  15. J. C. Serrano-Ruiz, G. W. Huber, M. A. Sánchez-Castillo, J. A. Dumesic, F. Rodríguez-Reinoso and A. Sepúlveda- Escribano, J. Catal., 241, 378 (2006). https://doi.org/10.1016/j.jcat.2006.05.005
  16. Y. Wang, Q. Mu, G. Wang, and Z. Zhou, Sens. Actuators B, 145, 847 (2010). https://doi.org/10.1016/j.snb.2010.01.070
  17. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p.120-121, p.126-127, Physical Electronics, Eden Pairie, MN, U.S.A (1995).

Cited by

  1. Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.96