• Title/Summary/Keyword: $CO_2$ adsorption

Search Result 720, Processing Time 0.028 seconds

Preparation of Activated Carbon Fiber Adsorbent for Low Level CO2 (저농도 이산화탄소 포집을 위한 초미세 탄소섬유 흡착제 제조 연구)

  • Kim, Dong Woo;Jung, Dong Won;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Adsorption is a plausible technology using solid adsorbents for dry capture of carbon dioxide ($CO_2$). In general, narrow size distribution of tiny pores and surface chemical functionalities of solid adsorbents enhance the adsorption capacity of gaseous $CO_2$ molecules. In order to utilize the advantages of fibrous adsorbents, this work prepared activated carbon nanofibers (ACNFs) via the electrospinning process using a polymer precursor of polyacylonitrile (PAN). The spun fibers were 390 nm to 580 nm in thickness with an average surface area of $27.3m^2/g$. The surface structure was improved by a programmed thermal activation at $800^{\circ}C$ in $CO_2$ atmosphere. It was also found that the nitrogen-groups including pyrrole and pyridine were created during the activation facilitaing the selective adsorption as forming enhanced active sites. The finally obtained adsorption capacities were 2.74 mmol/g for pure $CO_2$ flow and 0.74mmol/g for 3000 ppm.

Synthesis and studies on novel Copper adenine MOF for $CO_2$ adsorption (이산화탄소 흡착용 구리 아데닌 MOF 합성 및 연구)

  • Ganesh, Mani;Hemalatha, Pushparaj;Peng, Mei Mei;Kim, Dae-Kyung;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.357-360
    • /
    • 2011
  • A new copper adenine MOF (Bio-MOF) was synthesized by hydrothermal procedure and explored for its low temperature $CO_2$ adsorption. In this adenine a DNA nucleotide was used as a ligand for Cu in DMF solution at $130^{\circ}C$. The synthesized Bio MOF was characterized by XRD, SEM, EDS, TG and BE Tresults. The material possesses high surface area (716.08 $m^2g^{-1}$) with mono dispersed particles of about 2.126 nm. The maximum $CO_2$ adsorption capacity is 5wt% at $50^{\circ}C$, which is regenerable at $100^{\circ}C$ which is very low when compared to other metal organic frame work studied. This study proves that the synthesized material is also be a choice materials for low temperature $CO_2$adsorption.

  • PDF

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Preparation of composite adsorbent for low level $CO_2$ (저농도 $CO_2$ 포집을 위한 복합흡착제 제조)

  • Park, Young-Koo;Jo, Young-Min;Kim, Ho-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.257-264
    • /
    • 2008
  • Adsorption is one of the most efficient method for the separation of low level carbon dioxide. In order to enhance the adsorption capacity, a few additives such as alkali hydroxides were combined with the zeolitic sorbents. As a result of the experimental examination by applying the $CO_2$ flow of 3000 ppm, the composite sorbent showed the improved quality to a certain degree and the added binder was also found to contribute to better adsorption.

Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior (다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성)

  • Jeon, Jae Wan;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • The carbon dioxide adsorption behavior of silica with a large specific surface area and pore volume functionalized with aminosilane compounds via in-situ polymerization and functionalization method were investigated. The organosilanes include amino functional group capable of adsorbing carbon dioxide. Elemental analyzer, in situ FT-IR and thermogravimetric analyzer were used to characterize the sorbents and to determine their $CO_2$ adsorption behavior. Comparison of different aminosilane loading in the support revealed that polyaminosilane functionalization of 70% of the pore volume in the support was better in terms of the adsorption capacity and amine efficiency than that of 100% of the pore volume of the support. Furthermore, the sorbents showed a higher adsorption capacity at an adsorption temperature of $75^{\circ}C$ than at $30^{\circ}C$ due to the thermal expansion of synthesized polyaminosilanes inside the pore of silica. The N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS) sorbent with 70% of the pore volume functionalized showed the highest adsorption capacity of 9.2 wt% at $75^{\circ}C$.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation (초음파 합성법을 이용한 UiO-66의 합성 및 이산화탄소 흡착/자일렌 이성체 분리 연구)

  • Kim, Hee-Young;Kim, Se-Na;Kim, Jun;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.470-475
    • /
    • 2013
  • Zr-benzendicarboxylate structure, UiO-66 was prepared in 1-L batch scale by using a unique sonochemical-solvothermal combined synthesis method. The produced UiO-66 showed uniform particles of ca. $0.2{\mu}m$ in size with the BET surface area of $1,375m^2/g$ in high product yield (>95%). The UiO-66 showed 198 and 84 mg/g $CO_2$ adsorption capacity at 273 K and 298 K, respectively, with excellent $CO_2$ selectivity ($CO_2:N_2=32:1$) at ambient conditions. The isosteric heat of $CO_2$ adsorption varied from 33 to 25 kJ/mol as the adsorption progressed. The UiO-66 tested for xylene isomer separation in a liquid-phase batch mode confirmed preferential adsorption of the adsorbent for o-xylene over m-, and p-xylene.

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film

  • Jung, Bich Nam;Shim, Jin Kie;Hwang, Sung Wook
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.

Pure and Binary Gases Adsorption Equilibria of CO2/CO/CH4/H2 on Li-X Zeolite (Li-X 제올라이트에서의 CO2/CO/CH4/H2 단일성분 및 혼합성분의 흡착평형)

  • Park, Ju-Yong;Yang, Se-il;Choi, Do-Young;Jang, Seong-Cheol;Lee, Chang-Ha;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • Adsorption equilibria of the gases $CO_2$, CO, $CH_4$ and $H_2$ and their binary mixtures on Li-X zeolite (UOP) were obtained by static volumetric method in the pressure range of 0 to 20 bar at temperatures of 293.15, 303.15, and 313.15 K. Using the parameter obtained from single-component adsorption isotherm. Multicomponent adsorption equilibra could be predicted and compared with experimental data. Extended Langmuir isotherm, Extended Langmuir-Freundlich isotherm (L-F) and dual-site Langmuir isotherm (DSL) were used to predict the experimental results for binary adsorption equilibria of $H_2/CO_2$, $H_2/CO$, and $H_2/CH_4$ on Li-X Zeolite. Extended Langmuir-Freundlich isotherm predicted equilibria of $CH_4$ and $H_2$ better than any other isotherm. One the other hand DSL isotherm predicted equilibria of $CO_2$ and CO very well.