DOI QR코드

DOI QR Code

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz) ;
  • Mohammadi, Reza (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz) ;
  • Ramavandi, Bahman (Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences) ;
  • Bastanian, Maryam (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz)
  • Received : 2018.06.26
  • Accepted : 2018.08.23
  • Published : 2018.11.30

Abstract

Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Keywords

Acknowledgement

Supported by : University of Tabriz

References

  1. X. Jiang, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai and Z. Shi, Mater. Res. Bull., 102, 218 (2018). https://doi.org/10.1016/j.materresbull.2018.02.037
  2. M. Ahmadi, E. Kouhgardi and B. Ramavandi, Korean J. Chem. Eng., 33, 2589 (2016). https://doi.org/10.1007/s11814-016-0135-1
  3. H. Liu, Z. Wang, H. Li, H. Wang and R. Yu, Mater. Res. Bull., 100, 302 (2018). https://doi.org/10.1016/j.materresbull.2017.12.030
  4. J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, J. Zhang and R. Miao, Chemosphere, 195, 632 (2018). https://doi.org/10.1016/j.chemosphere.2017.12.128
  5. C. Sakulthaew, C. Chokejaroenrat, A. Poapolathep, T. Satapanajaru and S. Poapolathep, Chemosphere, 184, 1168 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.094
  6. R. Jobby, P. Jha, A. K. Yadav and N. Desai, Chemosphere, 207, 255 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.050
  7. J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long and L. Ling, J. Colloid Interface Sci., 462, 200 (2016). https://doi.org/10.1016/j.jcis.2015.10.001
  8. N. Ranjbar, S. Hashemi, B. Ramavandi and M. Ravanipour, Environ. Prog. Sustain. Energy (2018), https://doi.org/10.1002/ep.12854.
  9. E. I. Basaldella, P. G. Vazquez, F. Iucolano and D. Caputo, J. Colloid Interface Sci., 313, 574 (2007). https://doi.org/10.1016/j.jcis.2007.04.066
  10. Y. Zhao, S. Yang, D. Ding, J. Chen, Y. Yang, Z. Lei, C. Feng and Z. Zhang, J. Colloid Interface Sci., 395, 198 (2013). https://doi.org/10.1016/j.jcis.2012.12.054
  11. W. Yu, L. Zhang, H. Wang and L. Chai, J. Hazard. Mater., 260, 789 (2013). https://doi.org/10.1016/j.jhazmat.2013.06.045
  12. W. Wang, Chemosphere, 190, 97 (2018). https://doi.org/10.1016/j.chemosphere.2017.09.141
  13. I. Enniya, L. Rghioui and A. Jourani, Sustain Chem. Pharm., 7, 9 (2018). https://doi.org/10.1016/j.scp.2017.11.003
  14. S. Norouzi, M. Heidari, V. Alipour, O. Rahmanian, M. Fazlzadeh, F. Mohammadi-moghadam, H. Nourmoradi, B. Goudarzi and K. Dindarloo, Bioresour. Technol., 258, 48 (2018). https://doi.org/10.1016/j.biortech.2018.02.106
  15. L. Niazi, A. Lashanizadegan and H. Sharififard, J. Clean Prod., 185, 554 (2018). https://doi.org/10.1016/j.jclepro.2018.03.026
  16. M. S. Gaikwad and C. Balomajumder, Chemosphere, 184, 1141 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.074
  17. K. K. Senapati, C. Borgohain and P. Phukan, J. Mol. Catal. A, 339, 24 (2011). https://doi.org/10.1016/j.molcata.2011.02.007
  18. V. Srivastava, T. Kohout and M. Sillanpaa, J. Environ. Chem. Eng., 4, 2922 (2016). https://doi.org/10.1016/j.jece.2016.06.002
  19. C. Wan and J. Li, Carbohyd. Polym., 134, 144 (2015). https://doi.org/10.1016/j.carbpol.2015.07.083
  20. T. G. Glover, D. Sabo, L. A. Vaughan, J. A. Rossin and Z. J. Zhang, Langmuir, 28, 5695 (2012). https://doi.org/10.1021/la3003417
  21. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge and X. Wang, J. Alloys Compd., 678, 179 (2016). https://doi.org/10.1016/j.jallcom.2016.03.304
  22. T. M. Darweesh and M. J. Ahmed, Environ. Toxicol. Phar., 50, 159 (2017). https://doi.org/10.1016/j.etap.2017.02.005
  23. D. Pathania, A. Sharma and Z.-M. Siddiqi, J. Mol. Liq., 219, 359 (2016). https://doi.org/10.1016/j.molliq.2016.03.020
  24. Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li and Y. Wang, Chem. Eng. J., 232, 582 (2013). https://doi.org/10.1016/j.cej.2013.08.011
  25. S. Ayyappan, S. Mahadevan, P. Chandramohan, M. Srinivasan, J. Philip and B. Raj, J. Phys. Chem. C, 114, 6334 (2010). https://doi.org/10.1021/jp911966p
  26. M. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R. Singh and B. Rai, Resource-Efficient Technol., 2, S63 (2016). https://doi.org/10.1016/j.reffit.2016.11.011
  27. Q.-Q. Zhong, Q.-Y. Yue, Q. Li, B.-Y. Gao and X. Xu, Carbohyd. Polym., 111, 788 (2014). https://doi.org/10.1016/j.carbpol.2014.05.043
  28. W. M. Ibrahim, A. F. Hassan and Y. A. Azab, Egypt. J. Basic Appl. Sci., 3, 241 (2016). https://doi.org/10.1016/j.ejbas.2016.07.005
  29. A. F. Hassan and A. M. Youssef, Carbon Let., 15, 57 (2014). https://doi.org/10.5714/CL.2014.15.1.057
  30. M. Lopez-Lopez, J. Duran, A. Delgado and F. Gonzalez-Caballero, J. Colloid Interface Sci., 291, 144 (2005). https://doi.org/10.1016/j.jcis.2005.04.099
  31. R. Fu, Y. Liu, Z. Lou, Z. Wang, S. A. Baig and X. Xu, J. Taiwan Inst. Chem. Eng., 62, 247 (2016). https://doi.org/10.1016/j.jtice.2016.02.012
  32. S. Li, L. Liu, Y. Yu, G. Wang, H. Zhang and A. Chen, J. Alloys Compd., 698, 20 (2017). https://doi.org/10.1016/j.jallcom.2016.12.163
  33. R. Foroutan, R. Mohammadi and B. Ramavandi, Korean J. Chem. Eng., 35, 234 (2018). https://doi.org/10.1007/s11814-017-0239-2
  34. R. Nithya, T. Gomathi, P. Sudha, J. Venkatesan, S. Anil and S.-K. Kim, Int. J. Biol. Macromol., 87, 545 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.076
  35. R. Foroutan, F. S. Khoo, B. Ramavandi and S. Abbasi, Desalin. Water Treat., 82, 146 (2017). https://doi.org/10.5004/dwt.2017.20908
  36. B. Naeimi, R. Foroutan, B. Ahmadi, F. Sadeghzadeh and B. Ramavandi, Mater. Res. Exp., 5, 045501 (2018). https://doi.org/10.1088/2053-1591/aab81b
  37. M. Vieira, A. A. Neto, M. Gimenes and M. Da Silva, J. Hazard. Mater., 177, 362 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.040
  38. V. Singh, A. Sharma, D. Tripathi and R. Sanghi, J. Hazard. Mater., 161, 955 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.096
  39. O. Acisli, A. Khataee, S. Karaca and M. Sheydaei, Ultrason. Sonochem., 31, 116 (2016). https://doi.org/10.1016/j.ultsonch.2015.12.012
  40. M. Ghaedi, A. G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, J. Ind. Eng. Chem., 20, 2317 (2014). https://doi.org/10.1016/j.jiec.2013.10.007
  41. M. Gheju, I. Balcu and G. Mosoarca, J. Hazard. Mater., 310, 270 (2016). https://doi.org/10.1016/j.jhazmat.2016.02.042
  42. S. Barnie, J. Zhang, H. Wang, H. Yin and H. Chen, Chemosphere, 212, 209 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.067
  43. Z. Ding, W. Wang, Y. Zhang, F. Li and J. P. Liu, J. Alloys Compd., 640, 362 (2015). https://doi.org/10.1016/j.jallcom.2015.04.020
  44. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918). https://doi.org/10.1021/ja02242a004
  45. R. Foroutan, H. Esmaeili, S. D. Rishehri, F. Sadeghzadeh, S. Mirahmadi, M. Kosarifard and B. Ramavandi, Data in Brief, 12, 485 (2017). https://doi.org/10.1016/j.dib.2017.04.031
  46. M. H. Fatehi, J. Shayegan, M. Zabihi and I. Goodarznia, J. Environ. Chem. Eng., 5, 1454 (2017).
  47. H. Freundlich, Z. Phys. Chem., 57, 385 (1907).
  48. B. Ramavandi, A. Rahbar and S. Sahebi, Desal. Water Treat., 57, 23814 (2016). https://doi.org/10.1080/19443994.2015.1136695
  49. A. Teimouri, H. Esmaeili, R. Foroutan and B. Ramavandi, Korean J. Chem. Eng., 35, 479 (2018). https://doi.org/10.1007/s11814-017-0311-y
  50. S. Rangabhashiyam and N. Selvaraju, J. Mol. Liq., 207, 39 (2015). https://doi.org/10.1016/j.molliq.2015.03.018
  51. V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, B. Jokic, D. Janackovic and R. Petrovic, Appl. Clay Sci., 80, 202 (2013).
  52. S. Rajput, C. U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 468, 334 (2016). https://doi.org/10.1016/j.jcis.2015.12.008
  53. A. Maleki, B. Hayati, M. Naghizadeh and S. W. Joo, Ind. Eng. Chem. Res., 28, 211 (2015). https://doi.org/10.1016/j.jiec.2015.02.016
  54. Y. Xiao, H. Liang and Z. Wang, Mater. Res. Bull., 48, 3910 (2013). https://doi.org/10.1016/j.materresbull.2013.05.099
  55. S. Periyasamy and N. Viswanathan, New J. Chem., 42, 3371 (2018). https://doi.org/10.1039/C7NJ04524G
  56. M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li and X. Wang, Dalton Trans., 42, 14710 (2013). https://doi.org/10.1039/c3dt50955a
  57. X. Zhang, L. Lv, Y. Qin, M. Xu, X. Jia and Z. Chen, Bioresour. Technol., 256, 1 (2018). https://doi.org/10.1016/j.biortech.2018.01.145
  58. H. Uslu, D. Datta and S. Azizian, J. Mol. Liq., 215, 449 (2016). https://doi.org/10.1016/j.molliq.2016.01.023
  59. A. Aid, S. Amokrane, D. Nibou, E. Mekatel, M. Trari and V. Hulea, Water Sci. Technol., 77, 60 (2018). https://doi.org/10.2166/wst.2017.509
  60. S. I. Rathnayake, W. N. Martens, Y. Xi, R. L. Frost and G. A. Ayoko, J. Colloid Interface Sci., 490, 163 (2017). https://doi.org/10.1016/j.jcis.2016.11.070
  61. R. A. Abu-Zurayk, R. Z. Al Bakain, I. Hamadneh and A. H. AlDujaili, Int. J. Miner. Proces, 140, 79 (2015). https://doi.org/10.1016/j.minpro.2015.05.004
  62. R. Kumar, S.-J. Kim, K.-H. Kim, S.-h. Lee, H.-S. Park and B.-H. Jeon, Appl. Geochem., 88, 113 (2018). https://doi.org/10.1016/j.apgeochem.2017.04.002
  63. P. Maneechakr and S. Karnjanakom, J. Chem. Thermodyn., 106, 104 (2017). https://doi.org/10.1016/j.jct.2016.11.021
  64. J. Yang, M. Yu and W. Chen, Ind. Eng. Chem. Res., 21, 414 (2015). https://doi.org/10.1016/j.jiec.2014.02.054

Cited by

  1. Cr(VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina-christi leaf vol.6, pp.4, 2018, https://doi.org/10.1088/2053-1591/aafb45
  2. Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe2O4 as a recyclable magnetic composite vol.26, pp.19, 2018, https://doi.org/10.1007/s11356-019-05282-z
  3. Syntheses of magnetic GO @ melamine formaldehyde resin for dyes adsorption vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab1ba6
  4. Syntheses of magnetic GO @ melamine formaldehyde resin for dyes adsorption vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab1ba6
  5. Functional group driven adsorption of neutral red by boron nitride nanoparticles: experimental and theoretical studies vol.6, pp.9, 2019, https://doi.org/10.1088/2053-1591/ab33a6
  6. Thermodynamic and Kinetic Studies of Removal Process of Hexavalent Chromium Ions from Water by Using Bio-conducting Starch-Montmorillonite/Polyaniline Nanocomposite vol.29, pp.6, 2018, https://doi.org/10.1007/s10904-019-01152-w
  7. Adsorption of Congo red with hydrothermal treated shiitake mushroom vol.7, pp.1, 2018, https://doi.org/10.1088/2053-1591/ab5ff3
  8. Removal of fluoride from aqueous solution by porous Vaterite calcium carbonate nanoparticles vol.7, pp.3, 2018, https://doi.org/10.1088/2053-1591/ab7692
  9. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media vol.27, pp.12, 2018, https://doi.org/10.1007/s11356-020-07756-x
  10. Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides vol.27, pp.14, 2018, https://doi.org/10.1007/s11356-020-08102-x
  11. Thermal and hydrothermal alkaline modification of kaolin for the adsorptive removal of lead(II) ions from aqueous solution vol.2, pp.6, 2018, https://doi.org/10.1007/s42452-020-2621-7
  12. Developing the new kinetics model based on the adsorption process: From fitting to comparison and prediction vol.725, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.138490
  13. Clay/MgFe 2 O 4 as a Novel Composite for Removal of Cr (VI) From Aqueous Media vol.5, pp.30, 2020, https://doi.org/10.1002/slct.202002383
  14. Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water vol.251, pp.None, 2018, https://doi.org/10.1016/j.carbpol.2020.117085
  15. Facile preparation of taurine modified magnetic chitosan nanocomposites as biodegradable adsorbents toward methylene blue vol.42, pp.20, 2018, https://doi.org/10.1080/09593330.2020.1725140
  16. Synthesis of novel adsorbent by incorporation of plant extracts in amino-functionalized silica-coated magnetic nanomaterial for the removal of Zn2+and Cu2+from aqueous solution vol.19, pp.2, 2018, https://doi.org/10.1007/s40201-021-00696-9
  17. Application of waste chalk/CoFe2O4/K2CO3 composite as a reclaimable catalyst for biodiesel generation from sunflower oil vol.289, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2021.133226