Browse > Article
http://dx.doi.org/10.1007/s11814-018-0145-2

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon  

Foroutan, Rauf (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz)
Mohammadi, Reza (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz)
Ramavandi, Bahman (Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences)
Bastanian, Maryam (Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2207-2219 More about this Journal
Abstract
Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.
Keywords
Activated Carbon; AC/$CoFe_2O_4$ Composite; Chromium Adsorption; Desorption Study; Half-life;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long and L. Ling, J. Colloid Interface Sci., 462, 200 (2016).   DOI
2 N. Ranjbar, S. Hashemi, B. Ramavandi and M. Ravanipour, Environ. Prog. Sustain. Energy (2018), https://doi.org/10.1002/ep.12854.   DOI
3 E. I. Basaldella, P. G. Vazquez, F. Iucolano and D. Caputo, J. Colloid Interface Sci., 313, 574 (2007).   DOI
4 Y. Zhao, S. Yang, D. Ding, J. Chen, Y. Yang, Z. Lei, C. Feng and Z. Zhang, J. Colloid Interface Sci., 395, 198 (2013).   DOI
5 W. Yu, L. Zhang, H. Wang and L. Chai, J. Hazard. Mater., 260, 789 (2013).   DOI
6 W. Wang, Chemosphere, 190, 97 (2018).   DOI
7 I. Enniya, L. Rghioui and A. Jourani, Sustain Chem. Pharm., 7, 9 (2018).   DOI
8 S. Norouzi, M. Heidari, V. Alipour, O. Rahmanian, M. Fazlzadeh, F. Mohammadi-moghadam, H. Nourmoradi, B. Goudarzi and K. Dindarloo, Bioresour. Technol., 258, 48 (2018).   DOI
9 L. Niazi, A. Lashanizadegan and H. Sharififard, J. Clean Prod., 185, 554 (2018).   DOI
10 M. S. Gaikwad and C. Balomajumder, Chemosphere, 184, 1141 (2017).   DOI
11 K. K. Senapati, C. Borgohain and P. Phukan, J. Mol. Catal. A, 339, 24 (2011).   DOI
12 V. Srivastava, T. Kohout and M. Sillanpaa, J. Environ. Chem. Eng., 4, 2922 (2016).   DOI
13 C. Wan and J. Li, Carbohyd. Polym., 134, 144 (2015).   DOI
14 T. G. Glover, D. Sabo, L. A. Vaughan, J. A. Rossin and Z. J. Zhang, Langmuir, 28, 5695 (2012).   DOI
15 W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge and X. Wang, J. Alloys Compd., 678, 179 (2016).   DOI
16 S. Ayyappan, S. Mahadevan, P. Chandramohan, M. Srinivasan, J. Philip and B. Raj, J. Phys. Chem. C, 114, 6334 (2010).   DOI
17 T. M. Darweesh and M. J. Ahmed, Environ. Toxicol. Phar., 50, 159 (2017).   DOI
18 D. Pathania, A. Sharma and Z.-M. Siddiqi, J. Mol. Liq., 219, 359 (2016).   DOI
19 Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li and Y. Wang, Chem. Eng. J., 232, 582 (2013).   DOI
20 M. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R. Singh and B. Rai, Resource-Efficient Technol., 2, S63 (2016).   DOI
21 Q.-Q. Zhong, Q.-Y. Yue, Q. Li, B.-Y. Gao and X. Xu, Carbohyd. Polym., 111, 788 (2014).   DOI
22 W. M. Ibrahim, A. F. Hassan and Y. A. Azab, Egypt. J. Basic Appl. Sci., 3, 241 (2016).   DOI
23 A. F. Hassan and A. M. Youssef, Carbon Let., 15, 57 (2014).   DOI
24 M. Lopez-Lopez, J. Duran, A. Delgado and F. Gonzalez-Caballero, J. Colloid Interface Sci., 291, 144 (2005).   DOI
25 R. Nithya, T. Gomathi, P. Sudha, J. Venkatesan, S. Anil and S.-K. Kim, Int. J. Biol. Macromol., 87, 545 (2016).   DOI
26 R. Fu, Y. Liu, Z. Lou, Z. Wang, S. A. Baig and X. Xu, J. Taiwan Inst. Chem. Eng., 62, 247 (2016).   DOI
27 S. Li, L. Liu, Y. Yu, G. Wang, H. Zhang and A. Chen, J. Alloys Compd., 698, 20 (2017).   DOI
28 R. Foroutan, R. Mohammadi and B. Ramavandi, Korean J. Chem. Eng., 35, 234 (2018).   DOI
29 R. Foroutan, F. S. Khoo, B. Ramavandi and S. Abbasi, Desalin. Water Treat., 82, 146 (2017).   DOI
30 B. Naeimi, R. Foroutan, B. Ahmadi, F. Sadeghzadeh and B. Ramavandi, Mater. Res. Exp., 5, 045501 (2018).   DOI
31 M. Ghaedi, A. G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, J. Ind. Eng. Chem., 20, 2317 (2014).   DOI
32 M. Vieira, A. A. Neto, M. Gimenes and M. Da Silva, J. Hazard. Mater., 177, 362 (2010).   DOI
33 V. Singh, A. Sharma, D. Tripathi and R. Sanghi, J. Hazard. Mater., 161, 955 (2009).   DOI
34 O. Acisli, A. Khataee, S. Karaca and M. Sheydaei, Ultrason. Sonochem., 31, 116 (2016).   DOI
35 M. Gheju, I. Balcu and G. Mosoarca, J. Hazard. Mater., 310, 270 (2016).   DOI
36 R. Foroutan, H. Esmaeili, S. D. Rishehri, F. Sadeghzadeh, S. Mirahmadi, M. Kosarifard and B. Ramavandi, Data in Brief, 12, 485 (2017).   DOI
37 S. Barnie, J. Zhang, H. Wang, H. Yin and H. Chen, Chemosphere, 212, 209 (2018).   DOI
38 Z. Ding, W. Wang, Y. Zhang, F. Li and J. P. Liu, J. Alloys Compd., 640, 362 (2015).   DOI
39 I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).   DOI
40 M. H. Fatehi, J. Shayegan, M. Zabihi and I. Goodarznia, J. Environ. Chem. Eng., 5, 1454 (2017).
41 H. Freundlich, Z. Phys. Chem., 57, 385 (1907).
42 B. Ramavandi, A. Rahbar and S. Sahebi, Desal. Water Treat., 57, 23814 (2016).   DOI
43 A. Teimouri, H. Esmaeili, R. Foroutan and B. Ramavandi, Korean J. Chem. Eng., 35, 479 (2018).   DOI
44 S. Rangabhashiyam and N. Selvaraju, J. Mol. Liq., 207, 39 (2015).   DOI
45 V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, B. Jokic, D. Janackovic and R. Petrovic, Appl. Clay Sci., 80, 202 (2013).
46 M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li and X. Wang, Dalton Trans., 42, 14710 (2013).   DOI
47 S. Rajput, C. U. Pittman Jr. and D. Mohan, J. Colloid Interface Sci., 468, 334 (2016).   DOI
48 A. Maleki, B. Hayati, M. Naghizadeh and S. W. Joo, Ind. Eng. Chem. Res., 28, 211 (2015).   DOI
49 Y. Xiao, H. Liang and Z. Wang, Mater. Res. Bull., 48, 3910 (2013).   DOI
50 S. Periyasamy and N. Viswanathan, New J. Chem., 42, 3371 (2018).   DOI
51 X. Zhang, L. Lv, Y. Qin, M. Xu, X. Jia and Z. Chen, Bioresour. Technol., 256, 1 (2018).   DOI
52 H. Uslu, D. Datta and S. Azizian, J. Mol. Liq., 215, 449 (2016).   DOI
53 A. Aid, S. Amokrane, D. Nibou, E. Mekatel, M. Trari and V. Hulea, Water Sci. Technol., 77, 60 (2018).   DOI
54 S. I. Rathnayake, W. N. Martens, Y. Xi, R. L. Frost and G. A. Ayoko, J. Colloid Interface Sci., 490, 163 (2017).   DOI
55 R. A. Abu-Zurayk, R. Z. Al Bakain, I. Hamadneh and A. H. AlDujaili, Int. J. Miner. Proces, 140, 79 (2015).   DOI
56 R. Kumar, S.-J. Kim, K.-H. Kim, S.-h. Lee, H.-S. Park and B.-H. Jeon, Appl. Geochem., 88, 113 (2018).   DOI
57 P. Maneechakr and S. Karnjanakom, J. Chem. Thermodyn., 106, 104 (2017).   DOI
58 J. Yang, M. Yu and W. Chen, Ind. Eng. Chem. Res., 21, 414 (2015).   DOI
59 M. Ahmadi, E. Kouhgardi and B. Ramavandi, Korean J. Chem. Eng., 33, 2589 (2016).   DOI
60 X. Jiang, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai and Z. Shi, Mater. Res. Bull., 102, 218 (2018).   DOI
61 H. Liu, Z. Wang, H. Li, H. Wang and R. Yu, Mater. Res. Bull., 100, 302 (2018).   DOI
62 J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, J. Zhang and R. Miao, Chemosphere, 195, 632 (2018).   DOI
63 C. Sakulthaew, C. Chokejaroenrat, A. Poapolathep, T. Satapanajaru and S. Poapolathep, Chemosphere, 184, 1168 (2017).   DOI
64 R. Jobby, P. Jha, A. K. Yadav and N. Desai, Chemosphere, 207, 255 (2018).   DOI