Browse > Article
http://dx.doi.org/10.20909/kopast.2018.24.3.149

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film  

Jung, Bich Nam (Korea Packaging Center, Korea Institute of Industrial Technology)
Shim, Jin Kie (Korea Packaging Center, Korea Institute of Industrial Technology)
Hwang, Sung Wook (Korea Packaging Center, Korea Institute of Industrial Technology)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.24, no.3, 2018 , pp. 149-157 More about this Journal
Abstract
Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.
Keywords
LDPE; Zeolite 4A; Carbon dioxide adsorption; Composite; Film; Foaming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Selke, S. E. and Culter, J. D. 2016. Plastics packaging: Properties, processing, applications, and regulations. Carl Hanser Verlag GmbH Co KG, Germany.
2 Daniels, J. A., Krishnamurthi, R., and Rizvi, S. S. 1985. A review of effects of carbon dioxide on microbial growth and food quality. J. Food Prot. 48: 532-537.   DOI
3 Sorheim, O., Ofstad, R., and Lea, P. 2004. Effects of carbon dioxide on yield, texture and microstructure of cooked ground beef. Meat Sci. 67: 231-236.   DOI
4 Luno, M. A., Beltran, J., and Roncales, P. 1998. Shelf-life extension and colour stabilisation of beef packaged in a low $O_2$ atmosphere containing CO: Loin steaks and ground meat. Meat Sci. 48: 75-84.   DOI
5 Fu, S.-Y., Feng, X.-Q., Lauke, B., and Mai, Y.-W. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 39: 933-961.   DOI
6 Ko, D., Siriwardane, R., and Biegler, L. T. 2003. Optimization of a pressure-swing adsorption process using zeolite 13X for $CO_2$ sequestration. Ind. Eng. Chem. Res. 42: 339-348.   DOI
7 Cavenati, S., Grande, C. A., and Rodrigues, A. E. 2004. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data. 49: 1095-1101.   DOI
8 Saha, D., Bao, Z., Jia, F., and Deng, S. 2010. Adsorption of $CO_2$, $CH_4$, $N_2O$, and $N_2$ on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44: 1820-1826.   DOI
9 Zhao, Z., Cui, X., Ma, J., and Li, R. 2007. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. Int. J. Greenh. Gas Con. 1: 355-359.   DOI
10 Chue, K., Kim, J., Yoo, Y., Cho, S., and Yang, R. 1995. Comparison of activated carbon and zeolite 13X for $CO_2$ recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34: 591-598.   DOI
11 Lu, C., Bai, H., Wu, B., Su, F., and Hwang, J. F. 2008. Comparative study of $CO_2$ capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22: 3050-3056.   DOI
12 Li, Q. and Matuana, L. M. 2003. Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88: 3139-3150.   DOI
13 Zhao, J., Buldum, A., Han, J., and Lu, J. P. 2002. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13: 195.   DOI
14 Park, I.-G., Hong, M.-S., Kim, B.-S., and Kang, H.-G. 2013. Ambient $CO_2$ adsorption and regeneration performance of zeolite and activated carbon. J. Korean Soc. Environ. Eng. 35: 307-311.   DOI
15 Siriwardane, R. V., Shen, M.-S., Fisher, E. P., and Poston, J. A. 2001. Adsorption of $CO_2$ on molecular sieves and activated carbon. Energy Fuels 15: 279-284.   DOI
16 Cooksey, K. 2001. Antimicrobial food packaging materials. Additives for Polymers 2001: 6-10.
17 Mengeloglu, F. and Matuana, L. M. 2001. Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Techn. 7: 142-148.   DOI
18 Matuana, L. M. and Mengeloglu, F. 2001. Microcellular foaming of impact-modified rigid PVC/wood-flour composites. J. Vinyl Addit. Techn. 7: 67-75.   DOI
19 Libby, B., Smyrl, W., and Cussler, E. 2003. Polymer-zeolite composite membranes for direct methanol fuel cells. AIChE J. 49: 991-1001.   DOI
20 Suer, M. G., Bac, N., and Yilmaz, L. 1994. Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Memb. Sci. 91: 77-86.   DOI
21 Byun, S. C., Jeong, Y. J., Park, J. W., Kim, S. D., Ha, H. Y., and Kim, W. J. 2006. Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ion. 177: 3233-3243.   DOI
22 Chen, Z., Holmberg, B., Li, W., Wang, X., Deng, W., Munoz, R., and Yan, Y. 2006. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater. 18: 5669-5675.   DOI
23 Huang, Z., Shi, Y., Wen, R., Guo, Y.-H., Su, J.-F., and Matsuura, T. 2006. Multilayer poly (vinyl alcohol)-zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. Sep. Purif. Technol. 51: 126-136.   DOI
24 Pechar, T. W., Kim, S., Vaughan, B., Marand, E., Tsapatsis, M., Jeong, H. K., and Cornelius, C. J. 2006. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. J. Memb. Sci. 277: 195-202.   DOI
25 Ge, Q., Wang, Z., and Yan, Y. 2009. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J. Am. Chem. Soc. 131: 17056-17057.   DOI
26 Wang, H., Holmberg, B. A., and Yan, Y. 2003. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. J. Am. Chem. Soc. 125: 9928-9929.   DOI
27 Metin, D., Tihminlioglu, F., Balkose, D., and Dlku, S. 2004. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos. Part A Appl. Sci. Manuf. 35: 23-32.   DOI
28 Han, B., Wang, X., Sun, Z., Yang, J., and Lei, Q. 2013. Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite. Appl. Phys. Lett. 102: 012902.   DOI
29 Kim, H., Biswas, J., and Choe, S. 2006. Effects of stearic acid coating on zeolite in LDPE, LLDPE, and HDPE composites. Polymer 47: 3981-3992.   DOI
30 Wunderlich, B. 2012. Macromolecular physics vol 2. Elsevier, Netherlands.
31 Wang, S., Li, H., Xie, S., Liu, S., and Xu, L. 2006. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere. 65: 82-87.   DOI
32 Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., and Hausler, R. 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9: 013007.   DOI
33 Guerrica-EchevarriA, G., Eguiazabal, J., and Nazabal, J. 1998. Influence of molding conditions and talc content on the properties of polypropylene composites. Eur. Polym. J. 34: 1213-1219.   DOI