DOI QR코드

DOI QR Code

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film

  • Jung, Bich Nam (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Shim, Jin Kie (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Hwang, Sung Wook (Korea Packaging Center, Korea Institute of Industrial Technology)
  • Received : 2018.11.13
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.

Keywords

References

  1. Selke, S. E. and Culter, J. D. 2016. Plastics packaging: Properties, processing, applications, and regulations. Carl Hanser Verlag GmbH Co KG, Germany.
  2. Daniels, J. A., Krishnamurthi, R., and Rizvi, S. S. 1985. A review of effects of carbon dioxide on microbial growth and food quality. J. Food Prot. 48: 532-537. https://doi.org/10.4315/0362-028X-48.6.532
  3. Sorheim, O., Ofstad, R., and Lea, P. 2004. Effects of carbon dioxide on yield, texture and microstructure of cooked ground beef. Meat Sci. 67: 231-236. https://doi.org/10.1016/j.meatsci.2003.10.010
  4. Luno, M. A., Beltran, J., and Roncales, P. 1998. Shelf-life extension and colour stabilisation of beef packaged in a low $O_2$ atmosphere containing CO: Loin steaks and ground meat. Meat Sci. 48: 75-84. https://doi.org/10.1016/S0309-1740(97)00078-8
  5. Fu, S.-Y., Feng, X.-Q., Lauke, B., and Mai, Y.-W. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 39: 933-961. https://doi.org/10.1016/j.compositesb.2008.01.002
  6. Cavenati, S., Grande, C. A., and Rodrigues, A. E. 2004. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data. 49: 1095-1101. https://doi.org/10.1021/je0498917
  7. Saha, D., Bao, Z., Jia, F., and Deng, S. 2010. Adsorption of $CO_2$, $CH_4$, $N_2O$, and $N_2$ on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44: 1820-1826. https://doi.org/10.1021/es9032309
  8. Zhao, Z., Cui, X., Ma, J., and Li, R. 2007. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. Int. J. Greenh. Gas Con. 1: 355-359. https://doi.org/10.1016/S1750-5836(07)00072-2
  9. Ko, D., Siriwardane, R., and Biegler, L. T. 2003. Optimization of a pressure-swing adsorption process using zeolite 13X for $CO_2$ sequestration. Ind. Eng. Chem. Res. 42: 339-348. https://doi.org/10.1021/ie0204540
  10. Chue, K., Kim, J., Yoo, Y., Cho, S., and Yang, R. 1995. Comparison of activated carbon and zeolite 13X for $CO_2$ recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34: 591-598. https://doi.org/10.1021/ie00041a020
  11. Lu, C., Bai, H., Wu, B., Su, F., and Hwang, J. F. 2008. Comparative study of $CO_2$ capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22: 3050-3056. https://doi.org/10.1021/ef8000086
  12. Zhao, J., Buldum, A., Han, J., and Lu, J. P. 2002. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13: 195. https://doi.org/10.1088/0957-4484/13/2/312
  13. Park, I.-G., Hong, M.-S., Kim, B.-S., and Kang, H.-G. 2013. Ambient $CO_2$ adsorption and regeneration performance of zeolite and activated carbon. J. Korean Soc. Environ. Eng. 35: 307-311. https://doi.org/10.4491/KSEE.2013.35.5.307
  14. Siriwardane, R. V., Shen, M.-S., Fisher, E. P., and Poston, J. A. 2001. Adsorption of $CO_2$ on molecular sieves and activated carbon. Energy Fuels 15: 279-284. https://doi.org/10.1021/ef000241s
  15. Cooksey, K. 2001. Antimicrobial food packaging materials. Additives for Polymers 2001: 6-10.
  16. Mengeloglu, F. and Matuana, L. M. 2001. Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Techn. 7: 142-148. https://doi.org/10.1002/vnl.10282
  17. Li, Q. and Matuana, L. M. 2003. Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88: 3139-3150. https://doi.org/10.1002/app.12003
  18. Matuana, L. M. and Mengeloglu, F. 2001. Microcellular foaming of impact-modified rigid PVC/wood-flour composites. J. Vinyl Addit. Techn. 7: 67-75. https://doi.org/10.1002/vnl.10269
  19. Libby, B., Smyrl, W., and Cussler, E. 2003. Polymer-zeolite composite membranes for direct methanol fuel cells. AIChE J. 49: 991-1001. https://doi.org/10.1002/aic.690490416
  20. Suer, M. G., Bac, N., and Yilmaz, L. 1994. Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Memb. Sci. 91: 77-86. https://doi.org/10.1016/0376-7388(94)00018-2
  21. Byun, S. C., Jeong, Y. J., Park, J. W., Kim, S. D., Ha, H. Y., and Kim, W. J. 2006. Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ion. 177: 3233-3243. https://doi.org/10.1016/j.ssi.2006.09.014
  22. Huang, Z., Shi, Y., Wen, R., Guo, Y.-H., Su, J.-F., and Matsuura, T. 2006. Multilayer poly (vinyl alcohol)-zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. Sep. Purif. Technol. 51: 126-136. https://doi.org/10.1016/j.seppur.2006.01.005
  23. Pechar, T. W., Kim, S., Vaughan, B., Marand, E., Tsapatsis, M., Jeong, H. K., and Cornelius, C. J. 2006. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. J. Memb. Sci. 277: 195-202. https://doi.org/10.1016/j.memsci.2005.10.029
  24. Ge, Q., Wang, Z., and Yan, Y. 2009. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J. Am. Chem. Soc. 131: 17056-17057. https://doi.org/10.1021/ja9082057
  25. Chen, Z., Holmberg, B., Li, W., Wang, X., Deng, W., Munoz, R., and Yan, Y. 2006. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater. 18: 5669-5675. https://doi.org/10.1021/cm060841q
  26. Wang, H., Holmberg, B. A., and Yan, Y. 2003. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. J. Am. Chem. Soc. 125: 9928-9929. https://doi.org/10.1021/ja036071q
  27. Metin, D., Tihminlioglu, F., Balkose, D., and Dlku, S. 2004. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos. Part A Appl. Sci. Manuf. 35: 23-32. https://doi.org/10.1016/j.compositesa.2003.09.021
  28. Han, B., Wang, X., Sun, Z., Yang, J., and Lei, Q. 2013. Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite. Appl. Phys. Lett. 102: 012902. https://doi.org/10.1063/1.4773918
  29. Kim, H., Biswas, J., and Choe, S. 2006. Effects of stearic acid coating on zeolite in LDPE, LLDPE, and HDPE composites. Polymer 47: 3981-3992. https://doi.org/10.1016/j.polymer.2006.03.068
  30. Wunderlich, B. 2012. Macromolecular physics vol 2. Elsevier, Netherlands.
  31. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., and Hausler, R. 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9: 013007. https://doi.org/10.1088/1468-6996/9/1/013007
  32. Guerrica-EchevarriA, G., Eguiazabal, J., and Nazabal, J. 1998. Influence of molding conditions and talc content on the properties of polypropylene composites. Eur. Polym. J. 34: 1213-1219. https://doi.org/10.1016/S0014-3057(97)00228-0
  33. Wang, S., Li, H., Xie, S., Liu, S., and Xu, L. 2006. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere. 65: 82-87. https://doi.org/10.1016/j.chemosphere.2006.02.043