• Title/Summary/Keyword: $CH_4$/Ar gas

Search Result 99, Processing Time 0.029 seconds

OPTICAL EMISSION SPECTROSCOPY OF Ch$_4$/Ar/H$_2$ GAS DISCHARGES IN RF PLASMA CVD OF HYDROGENATED AMORPHOUS CARBON FILMS

  • Lee, Sung-Soo;Osamu Takai
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 1996
  • Hydrogenated amorphous carbon(a-C:H) films are prepared by rf plasma CVD in a $CH_4$ source gas system diluted with Ar of $H_2$. The spectra of emissive and reactive species in the plasma are detected using in stiu optical emission spectroscopy. Inaddition, the relationship between the film properties which can be varied by the deposition parameters and the Raman spectra is studied. In the $CH_4/H_2$ gas system, the emission intensities of CH and $H \tau$ decrease and those of $H \alpha$, $H \beta$, $C_2$ and Ar increase with increasing $H_2$ concentration, The formation of $C_2$ and CH in the $CH_4/Ar/H_2$ gas system is greatly suppressed by hydrogen addition and the excess of hydrogen addition is found to form graphite structure. The $C_2$ formation in the gas phase enhances a-C:H film formation.

  • PDF

Dry Etching Characteristics of GaN using a Planar Inductively Coupled CHsub $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성)

  • Kim, Mun-Yeong;Baek, Yeong-Sik;Tae, Heung-Sik;Lee, Yong-Hyeon;Lee, Jeong-Hui;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.616-621
    • /
    • 1999
  • A planar inductively coupled $CH_4/H_2/Ar$plasma was used to investigate dry etch characteristics of GaN as a function of input power, RF bias power, and etch gas composition. Etch rate of GaN increased with input power up to 600 W and was saturated at the higher power. Also, the etch rates increased with increasing RF bias power, composition of $CH_4$ and Ar gas. We achieved the maximum etch rate of $930{\AA}$/min at the input power 400 W, RF bias power 250 W, and operational pressure 10 mTorr. This paper shows that smooth etched surface having roughness less than 1 nm in rms can be obtained by using planar inductively coupled plasma with $CH_4/H_2/Ar$ gas chemistry.

  • PDF

Investigation on Etch Characteristics of FePt Magnetic Thin Films Using a $CH_4$/Ar Plasma

  • Kim, Eun-Ho;Lee, Hwa-Won;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.167-167
    • /
    • 2011
  • Magnetic random access memory (MRAM) is one of the prospective semiconductor memories for next generation. It has the excellent features including nonvolatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack is composed of various magnetic materials, metals, and a tunneling barrier layer. For the successful realization of high density MRAM, the etching process of magnetic materials should be developed. Among various magnetic materials, FePt has been used for pinned layer of MTJ stack. The previous etch study of FePt magnetic thin films was carried out using $CH_4/O_2/NH_3$. It reported only the etch characteristics with respect to the variation of RF bias powers. In this study, the etch characteristics of FePt thin films have been investigated using an inductively coupled plasma reactive ion etcher in various etch chemistries containing $CH_4$/Ar and $CH_4/O_2/Ar$ gas mixes. TiN thin film was employed as a hard mask. FePt thin films are etched by varying the gas concentration. The etch characteristics have been investigated in terms of etch rate, etch selectivity and etch profile. Furthermore, x-ray photoelectron spectroscopy is applied to elucidate the etch mechanism of FePt thin films in $CH_4$/Ar and $CH_4/O_2/Ar$ chemistries.

  • PDF

The etch characteristics of TiN thin films using in $CH_4$/Ar plasma ($CH_4$/Ar 플라즈마를 이용한 TiN 박막의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.247-248
    • /
    • 2008
  • The etching characteristics of Titanium Nitride (TiN) and etch selectivity of TiN to $SiO_2$ and $HfO_2$ in $CH_4$/Ar plasma were investigated. It was found that TiN etch rate shows a non-monotonic behavior with increasing both Ar fraction in $CH_4$ plasma, RF power, and gas pressure. The maximum TiN etch rate of nm/min was obtained for $CH_4$ (80%)/Ar(20%) gas mixture. The plasmas were characterized using optical emission spectroscopy (OES) analysis measurements. From these data, the suggestions on the TiN etch characteristics were made.

  • PDF

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Tribological Properties of Sputtered Boron Carbide Coating and the Effect of ${CH}_4$ Reactive Component of Processing Gas

  • Cuong, Pham-Duc;Ahn, Hyo-Sok;Kim, Jong-Hee;Shin, Kyung-Ho
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.56-59
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a ${B}_4$C target with Ar as processing gas. Various amounts of methane gas (${CH}_4$) were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that ${CH}_4$addition to Ar processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of ${CH}_4$gas component from 0 to 1.2 vol %. By adding a sufficient amount of ${CH}_4$(1.2 %) in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.

The Effects of Etch Process Parameters on the Ohmic Contact Formation in the Plasma Etching of GaN using Planar Inductively Coupled $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각에서 공정변수가 저항성 접촉 형성에 미치는 영향)

  • Kim, Mun-Yeong;Tae, Heung-Sik;Lee, Ho-Jun;Lee, Yong-Hyeon;Lee, Jeong-Hui;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.438-444
    • /
    • 2000
  • We report the effects of etch process parameters on the ohmic contact formation in the plasma etching of GaN. Planar inductively coupled plasma system with $CH_4/H_2/Ar$gas chemistry has been used as etch reactor. The contact resistance and the specific contact resistance have been investigated using transfer length method as a function of RF bias power and %Ar gas concentration in total flow rate. AES(Auger electron spectroscopy) analysis revealed that the etched GaN has nonstoichiometric Ga rich surface and was contaminated by carbon and oxygen. Especially large amount of carbon was detected at the sample etched for high bias power (or voltage) condition, where severe degradation of contact resistance was occurred. We achieved the low ohmic contact of $2.4{\times}10^{-3} {\Omega}cm^2$ specific contact resistance at the input power 400 W, RF bias power 150 W, and working pressure 10mTorr with 10 sccm $CH_4$, 15 sccm H2, 5 sccm Ar gas composition.

  • PDF

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Improving the etch properties and selectivity of BLT thin film adding $CH_4$ gas in $Ar/Cl_2$ plasma ($Ar/Cl_2$ plasma에서 $CH_4$ 첨가에 따른 BLT 박막의 식각특성 및 선택비 향상)

  • Kim, Jong-Gyu;Kim, Gwan-Ha;Kim, Kyoung-Tae;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1321-1322
    • /
    • 2007
  • $Ar/Cl_2$, $Ar/CH_4$$Ar/Cl_{2}/CH_{4}$ 유도결합 플라즈마의 가스 혼합비에 따른 BLT 박막의 식각 메커니즘과 선택비, 식각 후 박막 표면의 조성변화를 조사하였다. BLT 박막의 최대식각률은 $Ar/Cl_2$ 플라즈마에서의 Ar 가스 혼합비가 80%일 때 50.8 nm의 값을 보였다. 이 때, 1sccm의 $CH_4$ 첨가를 통하여 선택비와 식각률을 개선할 수 있었다. 박막 표면의 xPS 분석을 통해 BLT 박막 표면의 조성변화는 Cl 원자와의 반응에 의한 화학적 식각 손상이 H 원자와의 반응에 의한 그것보다 크다는 것을 알 수 있었다.

  • PDF