• Title/Summary/Keyword: $C^1$-continuity

Search Result 133, Processing Time 0.02 seconds

Meshless formulation for shear-locking free bending elements

  • Kanok-Nukulchai, W.;Barry, W.J.;Saran-Yasoontorn, K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.123-132
    • /
    • 2001
  • An improved version of the Element-free Galerkin method (EFGM) is presented here for addressing the problem of transverse shear locking in shear-deformable beams with a high length over thickness ratio. Based upon Timoshenko's theory of thick beams, it has been recognized that shear locking will be completely eliminated if the rotation field is constructed to match the field of slope, given by the first derivative of displacement. This criterion is applied directly to the most commonly implemented version of EFGM. However in the numerical process to integrate strain energy, the second derivative of the standard Moving Least Square (MLS) shape functions must be evaluated, thus requiring at least a $C^1$ continuity of MLS shape functions instead of $C^0$ continuity in the conventional EFGM. Yet this hindrance is overcome effortlessly by only using at least a $C^1$ weight function. One-dimensional quartic spline weight function with $C^2$ continuity is therefore adopted for this purpose. Various numerical results in this work indicate that the modified version of the EFGM does not exhibit transverse shear locking, reduces stress oscillations, produces fast convergence, and provides a surprisingly high degree of accuracy even with coarse domain discretizations.

Lp (p ≥ 1) SOLUTIONS OF MULTIDIMENSIONAL BSDES WITH TIME-VARYING QUASI-HÖLDER CONTINUITY GENERATORS IN GENERAL TIME INTERVALS

  • Lishun, Xiao;Shengjun, Fan
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.667-684
    • /
    • 2020
  • The objective of this paper is solving multidimensional backward stochastic differential equations with general time intervals, in Lp (p ≥ 1) sense, where the generator g satisfies a time-varying Osgood condition in y, a time-varying quasi-Hölder continuity condition in z, and its ith component depends on the ith row of z. Our result strengthens some existing works even for the case of finite time intervals.

HOLOMORPHIC MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL OF ℂn

  • Kwon, Ern Gun;Cho, Hong Rae;Koo, Hyungwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.189-202
    • /
    • 2013
  • On the unit ball of $\mathbb{C}^n$, the space of those holomorphic functions satisfying the mean Lipschitz condition $${\int}_0^1\;{\omega}_p(t,f)^q\frac{dt}{t^1+{\alpha}q}\;<\;{\infty}$$ is characterized by integral growth conditions of the tangential derivatives as well as the radial derivatives, where ${\omega}_p(t,f)$ denotes the $L^p$ modulus of continuity defined in terms of the unitary transformations of $\mathbb{C}^n$.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

CONTINUITY OF AN APPROXIMATE JORDAN MAPPING

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.505-509
    • /
    • 2005
  • We show that every $\varepsilon-approximate$ Jordan functional on a Banach algebra A is continuous. From this result we obtain that every $\varepsilon-approximate$ Jordan mapping from A into a continuous function space C(S) is continuous and it's norm less than or equal $1+\varepsilon$ where S is a compact Hausdorff space. This is a generalization of Jarosz's result [3, Proposition 5.5].

A FUNCTIONS AND ITS GRAPH FUCTION

  • CHAE G. I.;SINGH V. P.;PARK Y. S.;GIHARE R. P.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • For topological spaces X, Y and the function f : X → Y, it induces a function gr(f) : X → X x Y defined as gr(f)(χ) = (χ, f(χ)), for every χ ∈ X. It deals with some preliminary investigations relating to the behavior of functions and its graph functions. It has also been found that continuous functions are homotopic if and only if their graph functions are homotopic.

  • PDF

ON COVERING AND QUOTIENT MAPS FOR 𝓘𝒦-CONVERGENCE IN TOPOLOGICAL SPACES

  • Debajit Hazarika;Ankur Sharmah
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.267-280
    • /
    • 2023
  • In this article, we show that the family of all 𝓘𝒦-open subsets in a topological space forms a topology if 𝒦 is a maximal ideal. We introduce the notion of 𝓘𝒦-covering map and investigate some basic properties. The notion of quotient map is studied in the context of 𝓘𝒦-convergence and the relationship between 𝓘𝒦-continuity and 𝓘𝒦-quotient map is established. We show that for a maximal ideal 𝒦, the properties of continuity and preserving 𝓘𝒦-convergence of a function defined on X coincide if and only if X is an 𝓘𝒦-sequential space.

Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory

  • Shi, G.;Lam, K.Y.;Tay, T.E.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.623-637
    • /
    • 1999
  • This paper presents a four-noded quadrilateral $C^0$ strain plate element for the analysis of thick laminated composite plates. The element formulation is based on: 1) the third-order shear deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and rotations along element boundaries. Unlike the existing displacement-type composite plate elements based on the third-order theory, which rely on the $C^1$-continuity formulation, the present plate element is of $C^0$-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order expansion of the in-plane displacements through the thickness, the resulting theory and hence elements do not need shear correction factors. The explicit element stiffness matrix makes the present element more computationally efficient than the composite plate elements using numerical integration for the analysis of thick layered composite plates.