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Lp (p ≥ 1) SOLUTIONS OF MULTIDIMENSIONAL BSDES

WITH TIME-VARYING QUASI-HÖLDER CONTINUITY

GENERATORS IN GENERAL TIME INTERVALS

Xiao Lishun and Fan Shengjun

Abstract. The objective of this paper is solving multidimensional back-
ward stochastic differential equations with general time intervals, in Lp

(p ≥ 1) sense, where the generator g satisfies a time-varying Osgood con-

dition in y, a time-varying quasi-Hölder continuity condition in z, and its
ith component depends on the ith row of z. Our result strengthens some

existing works even for the case of finite time intervals.

1. Introduction

Let k and d be two given positive integers, (Ω,F ,P) a completed probability
space carrying a standard d-dimensional Brownian motion (Bt)t≥0, and (Ft)t≥0
the natural σ-algebra filtration generated by (Bt)t≥0. We assume that (Ft)t≥0
is right continuous and complete and that FT = F for a given terminal time
T satisfying 0 ≤ T ≤ ∞. In this paper, we are concerned with the following
multidimensional backward stochastic differential equation (BSDE for short in
the remaining):

(1) yt = ξ +

∫ T

t

g(s, ys, zs) ds−
∫ T

t

zs dBs, t ∈ [0, T ],

where the terminal condition ξ is an FT -measurable and k-dimensional random
vector, and the generator g(ω, t, y, z) : Ω × [0, T ] ×Rk ×Rk×d 7→ Rk is (Ft)-
progressively measurable for each (y, z). The solution (yt, zt)t∈[0,T ] is a pair of
(Ft)-progressively measurable processes. We also denote by BSDE (ξ, T, g) the
BSDE with parameters (ξ, T, g).
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Pardoux and Peng [20] initially introduced the nonlinear multidimensional
BSDEs, proving an existence and uniqueness result for square-integrable so-
lutions when the generator g is Lipschitz continuous in (y, z) uniformly with
respect to t, ξ and {g(t, 0, 0)}t∈[0,T ] are square-integrable, and the terminal
time T is a finite constant. Since then, a considerable amount of literature on
this field have been published, and many applications of BSDEs in mathemat-
ical finance, stochastic control, partial differential equations and so on (See El
Karoui, Peng and Quenez [8] for details) have been explored.

Generally, there are three main directions to extend the existence and unique-
ness result: (i) weakening the conditions of the generator g in (y, z); (ii) study-
ing non-square integrable solutions or reformulating a more general solution
space; (iii) improving the time interval from the finite case to the general case.
Other ways we refer to Buckdahn, Engelbert and Ruascanu [4], Bouchard, Elie
and Reveillac [1]. We note that different ways above require different tools and
techniques.

Concerning the first direction, we would like to mention the following works:
Mao [19], Lepeltier and San Martin [18], Kobylanski [17], Hamadène [16],
Briand, Lepetier and San Mrtin [3] and Fan, Jiang and Davison [11], see also
the references therein. Particularly, by virtue of some results on determin-
istic backward differential equations, Hamadène [16] proved the existence for
solutions of multidimensional BSDEs when the generator g satisfies a Osgood
condition in y, a uniform continuity condition in z and the ith component of
g depends on the ith row of z. Furthermore, by establishing an estimate of a
linear-growth function, Fan, Jiang and Davison [11] obtained the uniqueness
result under the same assumptions as those in Hamadène [16]. These works
dealt only with square-integrable parameters or L2 solutions.

To our knowledge, along the direction (ii), El Karoui, Peng and Quenez
[8] first studied the existence and uniqueness result for Lp (p > 1) solutions of
multidimensional BSDEs when ξ and {g(t, 0, 0)}t∈[0,T ] are p-integrable, see also
Briand, Delyon, Hu, Pardoux and Stoica [2], Chen [5], Fan [9], etc. Particularly,
Briand, Delyon, Hu, Pardoux and Stoica [2] also investigated the existence and
uniqueness for L1 solutions of multidimensional BSDEs when the generator g
is monotonic in y, Lipschitz continuous and of sublinear growth in z. Based
on this result, Fan and Liu [13] established an existence and uniqueness for L1

solutions of one dimensional BSDEs whose generator g is Lipschitz continuous
in y and Hölder continuous in z; and Tian, Jiang and Shi [21] further extended
this result, in which the generator g satisfies a Osgood condition in y and a
quasi-Hölder continuity condition in z. All the aforementioned works, however,
dealt only with the BSDEs with finite time intervals.

Many works have also been made along the direction (iii), see for example
Chen and Wang [6], Fuhrman and Tessitore [15]. Currently, many researchers
concentrate on synthesizing the three directions, such as Fan, Jiang and Tian
[12], Fan and Jiang [10], Fan and Dong [7], Wang, Liao and Fan [22]. In
particular, Xiao, Fan and Xu [23] studied the existence and uniqueness of
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Lp (p ≥ 1) solutions of multidimensional BSDEs with general time intervals,
which extends the result of Briand, Delyon, Hu, Pardoux and Stoica [2] to
the general time interval case. And Fan, Wang and Xiao [14] obtained the
existence and uniqueness for L2 solutions of multidimensional BSDEs with
uniformly continuous generators in general time intervals, improving the results
of Hamadène [16] and Fan, Jiang and Davison [11].

Motivated by these results, in this paper we establish an existence and
uniqueness result of Lp (p ≥ 1) solutions for multidimensional BSDEs with
general time intervals, where the generator g satisfies a time-varying Osgood
condition in y, a time-varying quasi-Hölder continuity condition in z and the
ith component of g depends on the ith row of z (See Theorem 3.2 in Section 3).
The whole idea can be viewed as a synthesis of directions (i) – (iii). This result
generalizes some known works including Hamadène [16], Fan, Jiang and Davi-
son [11], Fan and Liu [13], Tian, Jiang and Shi Tian, Jiang and Shi [21] and
Fan, Wang and Xiao [14], even for the case of finite time intervals.

The remainder of this paper is organized as follows. Section 2 contains some
usual notations and useful propositions. Section 3 is mainly devoted to the
statement of the existence and uniqueness result of Lp (p ≥ 1) solutions and
some examples are also provided. Section 4 gives the proof of our main result.

2. Notations and preliminaries

In this paper, the Euclidean norm of a vector y ∈ Rk will be defined by
|y|, and for a k × d matrix z, we define |z| =

√
Tr(zz∗), where and hereafter

z∗ represents the transpose of z. Let 〈x, y〉 represent the scalar product of x,
y ∈ Rk. For each real number p > 0, let Lp(Ω,FT ,P; Rk) (or Lp(FT ; Rk)
for simplicity) be the set of Rk-valued and FT -measurable random variables
ξ such that ‖ξ‖pLp := E[|ξ|p] < ∞ and let Sp(0, T ; Rk) (or Sp for simplicity)
denote the set of Rk-valued, (Ft)-adapted and continuous processes (Yt)t∈[0,T ]

such that

‖Y ‖Sp :=

(
E

[
sup
t∈[0,T ]

|Yt|p
])1∧1/p

<∞.

If p ≥ 1, ‖ · ‖Sp is a norm on Sp and if p ∈ (0, 1), (Y, Y ′) 7→ ‖Y − Y ′‖Sp
defines a distance on Sp. Under this metric, Sp is complete. Moreover, for
p > 0, let Mp(0, T ; Rk×d) (or Mp) denote the set of (equivalent classes of)
(Ft)-progressively measurable Rk×d-valued processes (Zt)t∈[0,T ] such that

‖Z‖Mp :=

{
E

[(∫ T

0

|Zt|2 dt

)p/2]}1∧1/p

<∞.

For any p ≥ 1, Mp is a Banach space endowed with this norm and for any
p ∈ (0, 1), Mp is a complete metric space with the resulting distance. Besides,
we say that a continuous process (Yt)t∈[0,T ] belongs to class (D) if the family
{Yτ : τ ∈ ΣT } is uniformly integrable, where ΣT stands for the set of all (Ft)-
stopping times τ such that τ ≤ T . For a process (Yt)t∈[0,T ] belonging to class



670 X. LISHUN AND F. SHENGJUN

(D), we define ‖Y ‖1 := sup{E[|Yτ |] : τ ∈ ΣT }. The space of (Ft)-progressively
measurable continuous processes which belong to class (D) is complete under
this norm.

Finally, let S be the set of all non-decreasing linear-growth continuous func-
tions ρ(·) : R+ 7→ R+ with ρ(0) = 0 and ρ(x) > 0 for all x > 0, where and
hereafter R+ := [0,∞). We denote the linear-growth constant for ρ(·) ∈ S by
A > 0, i.e., ρ(x) ≤ A(1 + x) for all x ∈ R+. In this paper, we will use the
following definition.

Definition. A pair of processes (yt, zt)t∈[0,T ] taking values in Rk × Rk×d is
called a solution of BSDE (1), if (yt, zt)t∈[0,T ] is (Ft)-progressively measurable

and satisfies that dP-a.s., t 7→ yt is continuous, t 7→ zt belongs to L2(0, T ),
t 7→ g(t, yt, zt) belongs to L1(0, T ) and BSDE (1) holds for each t ∈ [0, T ].

Next we present an a priori estimate for solutions of multidimensional BS-
DEs, which will play an important role in the proof of our main result. To
state it, the following assumption is necessary, where 0 ≤ T ≤ ∞ and p > 0.

(H) There exist two non-negative functions µ(·), λ(·) : [0, T ] 7→ R+ with∫ T
0

(
µ(t) + λ2(t)

)
dt < ∞ such that dP×dt - a.e., for each y ∈ Rk and

z ∈ Rk×d,

〈y, g(t, y, z)〉 ≤ µ(t)|y|2 + λ(t)|y||z|+ ft|y|,
where (ft)t∈[0,T ] is a non-negative and (Ft)-progressively measurable

process with E[(
∫ T
0
ftdt)

p]<∞.

Proposition 2.1. Assume that 0 ≤ T ≤ ∞, g satisfies assumption (H),
(yt, zt)t∈[0,T ] is a solution of BSDE (1) such that (yt)t∈[0,T ] belongs to Sp with

some p > 0. Then there exist two constants C1
p > 0 and C2

p > 0, where C1
p

depends on p,
∫ T
0
µ(t) dt and

∫ T
0
λ2(t) dt, and C2

p depends only on p, such that
dP-a.s., for each 0 ≤ r ≤ t ≤ T ,

(2) E

[(∫ T

t

|zs|2 ds

)p/2∣∣∣∣Fr]≤C1
pE

[
sup
s∈[t,T ]

|ys|p
∣∣∣∣Fr]+C2

pE

[(∫ T

t

fs ds

)p∣∣∣∣Fr].
Furthermore, if p > 1, then there exists a constant C3

p > 0 depending on p,∫ T
0
µ(t) dt and

∫ T
0
λ2(t) dt, such that dP-a.s., for each 0 ≤ r ≤ t ≤ T ,

E

[
sup
s∈[t,T ]

|ys|p
∣∣∣∣Fr]+ E

[(∫ T

t

|zs|2 ds

)p/2∣∣∣∣Fr]
≤ C3

p

(
E [ |ξ|p| Fr] + E

[(∫ T

t

fs ds

)p∣∣∣∣Fr]).(3)

Remark 2.2. Proposition 2.1 comes from Lemmas 2.3 and 2.4 in Xiao, Fan and
Xu [23] with the only difference lying on the constants appearing in (2). So
here we omit its proof. The fact that C2

p depends only on p will be used in the
proof of our main result.
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In the sequel, we introduce the following assumptions, where 0 ≤ T ≤ ∞
and p ≥ 1.

(A1) E
[
|ξ|p +

( ∫ T
0
|g(t, 0, 0)|dt

)p]
<∞;

(A2) dP×dt - a.e., for each z ∈ Rk×d, y 7→ g(t, y, z) is continuous;

(A3) g has a general growth in y, i.e., for each r ∈ R+, E
[ ∫ T

0
ψr(t) dt

]
<∞,

where

ψr(t) := sup
|y|≤r

|g(t, y, 0)− g(t, 0, 0)|;

(A4) There exists a deterministic function u(·) : [0, T ] 7→ R+ with
∫ T
0
u(t) dt

<∞ such that dP×dt - a.e., for each y1, y2 ∈ Rk and z ∈ Rk×d,

〈y1 − y2, g(t, y1, z)− g(t, y2, z)〉 ≤ u(t)|y1 − y2|2;

(A5) There exists a deterministic function v(·) : [0, T ] 7→ R+ with
∫ T
0
v2(t) dt

<∞ such that dP×dt - a.e., for each y ∈ Rk and z1, z2 ∈ Rk×d,

|g(t, y, z1)− g(t, y, z2)| ≤ v(t)|z1 − z2|;

(A6) There exist a constant α ∈ (0, 1) and a deterministic function γ(t) :

[0, T ] 7→ R+ with
∫ T
0

(
γ(t)+γ2/(2−α)(t)

)
dt <∞ such that dP×dt - a.e.,

for each y ∈ Rk and z ∈ Rk×d,

|g(t, y, z)− g(t, y, 0)| ≤ γ(t)(1 + |z|α).

Using a similar argument to that in the proofs of Theorems 3.1 and 4.1 in
Xiao, Fan and Xu [23] with some small changes due to the difference of the
growth condition of g in z, we can deduce the following existence and uniqueness
result, whose proof is omitted here.

Proposition 2.3. Assume that 0 ≤ T ≤ ∞, p ≥ 1 and (A1)–(A5) hold. We
have that

(i) if p > 1, then BSDE (1) admits a unique solution (yt, zt)t∈[0,T ] in
Sp ×Mp;

(ii) if p = 1 and g also satisfies (A6), then BSDE (1) admits a solution
(yt, zt)t∈[0,T ] ∈

⋂
β∈(0,1)(Sβ ×Mβ) such that (yt)t∈[0,T ] belongs to class

(D), which is unique in Sβ ×Mβ for each β ∈ (α, 1).

3. Existence and uniqueness result for Lp (p ≥ 1) solutions

In this section we will state the existence and uniqueness result for solutions
of BSDE (1) and give two examples to compare it with some existing works.
Let us first introduce the following assumptions with respect to the generator
g of BSDE (1), where 0 ≤ T ≤ ∞.

(H1) g satisfies a time-varying Osgood condition in y, i.e., there exist a

deterministic function u(·) : [0, T ] 7→ R+ with
∫ T
0
u(t) dt < ∞ and a



672 X. LISHUN AND F. SHENGJUN

function ρ(·) ∈ S with
∫
0+

1/ρ(u) du = ∞ such that dP×dt - a.e., for

each y1, y2 ∈ Rk and z ∈ Rk×d,

|g(ω, t, y1, z)− g(ω, t, y2, z)| ≤ u(t)ρ(|y1 − y2|);

(H2)α g satisfies a time-varying quasi-Hölder continuity condition in z, i.e.,
there exist a constant α ∈ (0, 1], a deterministic function v(·) : [0, T ] 7→
R+ with

∫ T
0

(
v(t) + v2(t)

)
dt < ∞ and a function φ(·) ∈ S such that

dP×dt - a.e., for each y ∈ Rk and z1, z2 ∈ Rk×d,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ v(t)φ(|z1 − z2|α);

(H3) For any i = 1, . . . , k, the ith component of g, denoted by gi(ω, t, y, z),
depends only on iz.

In the remaining of this paper, we put an i at upper left of y ∈ Rk, z ∈ Rk×d

to represent the ith component of y and the ith row of z, like iy and iz.

Remark 3.1. We provide some remarks with respect to the assumption (H2)α
as follows:

(i) In the case of α = 1 and φ(x) ≤ Ax for all x ∈ R+, we do not need the

condition that
∫ T
0
v(t) dt <∞.

(ii) When α = 1, (H2)α becomes the time-varying uniform continuity con-
dition, which is obviously weaker than (A5). And, when φ(x) = x, (H2)α
becomes the time-varying Hölder continuity condition. This is the reason that
we call (H2)α a time-varying quasi-Hölder continuity condition.

(iii) The larger the α, the weaker the condition (H2)α, i.e., for each 0 <
α < β ≤ 1, (H2)α ⇒ (H2)β . Indeed, if (H2)α holds with φ(·) ∈ S, then

φ(·) := φ(| · |α/β) is non-decreasing and continuous, and satisfies φ(x) > 0 for
all x > 0 and φ(0) = 0. On the other hand, since for all x ∈ R+, φ(x) ≤
Axα/β +A ≤ Ax+ 2A, then φ(·) is at most of linear-growth. Hence, φ(·) ∈ S,
and (H2)β holds with φ(·) due to the fact that φ(|z1 − z2|β) = φ(|z1 − z2|α).
Clearly, the contrary of the above statement is not true in general.

(iv) For each α ∈ (0, 1] and φ(·) ∈ S, we can deduce from (iii) with taking
β = 1 that φ(| · |α) ∈ S, and then it admits an estimate like φ(·) (see the
inequality (4) in Fan, Jiang and Davison [11] for details), i.e., for each x ∈ R+

and n ≥ 1,

(4) φ(xα) ≤ (n+ 2A)x+ φ

((
2A

n+ 2A

)α)
.

The main result of this paper is the following Theorem 3.2.

Theorem 3.2. Assume that 0 ≤ T ≤ ∞, p ≥ 1, α ∈ (0, 1], and (A1), (H1),
(H2)α and (H3) are in force. We have

(i) if p > 1, then BSDE (1) admits a unique solution (yt, zt)t∈[0,T ] in
Sp ×Mp;
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(ii) if p = 1 and α ∈ (0, 1), then BSDE (1) admits a solution (yt, zt)t∈[0,T ] ∈⋂
β∈(0,1)(Sβ ×Mβ) such that (yt)t∈[0,T ] belongs to class (D), which is

unique in Sβ ×Mβ for each β ∈ (α, 1).

We provide two examples to illustrate the applications of Theorem 3.2.

Example 3.3. Let 0 ≤ T < ∞, p ≥ 1, α ∈ (0, 1], k = 1 and ξ ∈ Lp(FT ; R).
For each (ω, t, y, z) ∈ Ω× [0, T ]×Rk ×Rk×d, define the generator g by

g(ω, t, y, z) = | ln t|h(|y|) +
|z|α
4
√
t

+ |Bt(ω)|,

where h(x) := (−x lnx)10≤x≤δ +
(
h′(δ−)(x − δ) + h(δ)

)
1x>δ, with δ small

enough. Since h(0) = 0 and h(·) is concave and increasing, we have h(x1+x2) ≤
h(x1) + h(x2) for all x1 and x2 ∈ R+, which implies that |h(x1) − h(x2)| ≤
h(|x1−x2|). Moreover, noticing that

∫
0+

1/(−x lnx) dx =∞, we know that the
generator g satisfies assumptions (A1), (H1), (H2)α and (H3) with u(t) = | ln t|,
v(t) = 1/ 4

√
t, ρ(x) = h(x) and φ(x) = x. Then by Theorem 3.2 we know that

if p > 1, then BSDE (1) admits a unique solution (yt, zt)t∈[0,T ] in Sp ×Mp;
and if p = 1 and α ∈ (0, 1), then BSDE (1) admits a solution (yt, zt)t∈[0,T ] ∈⋂
β∈(0,1)(Sβ ×Mβ) such that (yt)t∈[0,T ] belongs to class (D), which is unique

in Sβ ×Mβ for each β ∈ (α, 1).

We mention that Hamadène [16], Fan, Jiang and Davison [11] and Fan,
Wang and Xiao [14] dealt only with the case of square-integrable parameters,
Fan and Liu [13] and Tian, Jiang and Shi [21] dealt only with the case of
integrable parameters and u(t) and v(t) being bounded, and the required con-
ditions for g in z of Theorem 4.2 in Briand, Delyon, Hu, Pardoux and Stoica
[2] and (i) in Proposition 2.3 are the Lipschitz continuity. Thus, since for each
α ∈ (0, 1), the function |x|α is only uniformly continuous or α-Hölder contin-
uous rather than Lipschitz continuous on [0,∞), the existence and uniqueness
result in Example 3.3 can not be obtained by these aforementioned works. In
addition, Example 3.3 also illustrates that in our framework, u(t) and v(t) ap-
pearing in (H1) and (H2)α may be unbounded and their integrability is the
only requirement.

Example 3.4. Let 0 ≤ T ≤ ∞, p = 1 and ξ ∈ L1(FT ; Rk). For each i =
1, . . . , k and (ω, t, y, z) ∈ Ω × [0, T ] × Rk × Rk×d, define the generator g =
(g1, . . . , gk) by

gi(ω, t, y, z) = t2e−th(|y|) +
1

1 + t2
(

3
√
|iz|+ 4

√
|iz|
)

+ |Bt(ω)|,

where h(x) is defined in Example 3.3. It is not very hard to verify that the
generator g fulfills assumptions (A1), (H1), (H2)α and (H3) with u(t) = t2e−t,
v(t) = 1/(1 + t2), ρ(·) = h(·), α = 1/3 and φ(x) := x + x3/4 for each x ∈ R+.
It then follows from (ii) in Theorem 3.2 that BSDE (1) admits a solution
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(yt, zt)t∈[0,T ] ∈
⋂
β∈(0,1)(Sβ × Mβ) such that (yt)t∈[0,T ] belongs to class (D),

which is unique in Sβ ×Mβ for each β ∈ (1/3, 1).

It should be pointed out that, to our best knowledge, the existence and
uniqueness result for L1 solutions in Example 3.4 can not be obtained by any
existing results including Briand, Delyon, Hu, Pardoux and Stoica [2], Fan
and Liu [13], Tian, Jiang and Shi [21] and (ii) in Proposition 2.3. The reason
lies in that Theorem 6.3 in Briand, Delyon, Hu, Pardoux and Stoica [2] and
Proposition 2.3 require the Lipschitz condition for g in z, Fan and Liu [13] and
Tian, Jiang and Shi [21] only consider one dimensional BSDEs with finite time
intervals, and Fan and Liu [13] also requires the Lipschitz continuity of g in y.

4. Proof of the main result

In this section we will prove our main result — Theorem 3.2. Before the
proof we first establish the following Propositions 4.1 and 4.4 for preparation.

Proposition 4.1. Assume that α ∈ (0, 1], p > 1, 0 < q ≤ p, (ynt , z
n
t )t∈[0,T ] is

a solution of BSDE (ξ, T, gn) in Sq ×Mq for each n ≥ 1, and (H1), (H2)α and
(H3) hold for g and gn with the same parameters u(·), v(·), ρ(·) and φ(·). If
for each n ≥ 1, (ynt −y1t )t∈[0,T ] belongs to Sp, and {gn}∞n=1 converges uniformly

to g, i.e., there exists a non-increasing function sequence an(·) : [0, T ] 7→ R+

with
∫ T
0
an(t) dt→ 0 as n→∞ such that dP×dt - a.e., for each n ≥ 1, y ∈ Rk

and z ∈ Rk×d,

(5) |gn(t, y, z)− g(t, y, z)| ≤ an(t),

then there exists a solution (yt, zt)t∈[0,T ] ∈ Sq×Mq of BSDE (ξ, T, g) such that

lim
n→∞

(‖yn − y‖Sq + ‖zn − z‖Mq ) = 0.

Proof. Let the assumptions of Proposition 4.1 hold. For each n, m ≥ 1, set
ŷn,m· := yn· −ym· and ẑn,m· := zn· −zm· . Then (ŷn,mt , ẑn,mt )t∈[0,T ] with ŷn,m· ∈ Sp
is a solution of the following BSDE:

ŷn,mt =

∫ T

t

ĝn,m(s, ŷn,ms , ẑn,ms ) ds−
∫ T

t

ẑn,ms dBs, t ∈ [0, T ],

where ĝn,m(t, y, z) := gn(t, y+ymt , z+zmt )−gm(t, ymt , z
m
t ) for each y ∈ Rk and

z ∈ Rk×d. It then follows from (H1), (H2)α and (5) that dP×dt - a.e., for each
y ∈ Rk and z ∈ Rk×d, adding and subtracting the term gn(t, ymt , z

m
t ),

〈y, ĝn,m(t, y, z)〉 ≤u(t)|y|ρ(|y|) + v(t)|y|φ(|z|α) + |y|(an(t) + am(t))(6)

≤Au(t)|y|2+Av(t)|y||z|+|y|
(
A(u(t) + 2v(t))+2a1(t)

)
,

which indicates that assumption (H) is satisfied by the generator ĝn,m(t, y, z)
with µ(t) = Au(t), λ(t) = Av(t) and ft = A(u(t) + 2v(t)) + 2a1(t). Thus,
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Proposition 2.1 leads to the existence of a uniform constant C1 > 0 such that
for each n, m ≥ 1,

(7) |ynt − ymt | ≤ C1, ∀ t ∈ [0, T ] and ẑn,m· ∈ Mp.

The following proof will be split into three steps.
First Step: In this step we prove the convergence of {yn· }∞n=1 in Sq.
Firstly, assumption (H3) and Tanaka’s formula give that, for each n, m ≥ 1,

i = 1, . . . , k and t ∈ [0, T ],

|iŷn,mt | ≤
∫ T

t

sgn(iŷn,ms )ĝn,mi (s, ŷn,ms , iẑn,ms ) ds−
∫ T

t

〈sgn(iŷn,ms )(iẑn,ms )∗, dBs〉,

where ĝn,mi represents the ith component of ĝn,m. Furthermore, due to (H1),
(H2)α and (5), we can get that, dP×ds - a.e.,

|ĝn,mi (s, ŷn,ms , iẑn,ms )| ≤ u(s)ρ(|ŷn,ms |) + v(s)φ(|iẑn,ms |α) + an(s) + am(s).

Thus, combining the previous two inequalities and (4) yields that for each n,
m, l ≥ 1, i = 1, . . . , k and t ∈ [0, T ],

|iŷn,mt | ≤ ãln,m +

∫ T

t

(
u(s)ρ(|ŷn,ms |) + (l + 2A)v(s)|iẑn,ms |

)
ds

−
∫ T

t

〈sgn(iŷn,ms )(iẑn,ms )∗, dBs〉,

where

ãln,m :=

∫ T

0

(an(s) + am(s)) ds+ 1Dφ

((
2A

l + 2A

)α)∫ T

0

v(s) ds,

and here and later on 1D = 0 if α = 1 and φ(x) ≤ Ax for all x ∈ R+, otherwise,
1D = 1.

Now for each n, m, l ≥ 1, i = 1, 2, . . . , k and t ∈ [0, T ], let

ien,m,lt := (l + 2A)
sgn(iŷn,mt )(iẑn,mt )∗

|iẑn,mt |
1|iẑn,mt |6=0.

Then, (ien,m,lt )t∈[0,T ] is an Rd-valued, bounded and (Ft)-progressively mea-

surable process. It follows from Girsanov’s theorem that iBn,m,lt := Bt −∫ t
0
ien,m,ls v(s) ds, t ∈ [0, T ], is a d-dimensional Brownian motion under the

probability Pn,m
l,i on (Ω,FT ) defined by

dPn,m
l,i

dP
= exp

{∫ T

0

v(s)〈(ien,m,ls )∗, dBs〉 −
1

2

∫ T

0

v2(s)|ien,m,ls |2 ds

}
.

Thus, for each n, m, l ≥ 1, i = 1, . . . , k and t ∈ [0, T ],

(8) |iŷn,mt | ≤ ãln,m+

∫ T

t

u(s)ρ(|ŷn,ms |) ds−
∫ T

t

〈sgn(iŷn,ms )(iẑn,ms )∗, diBn,m,ls 〉.
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Moreover, since ẑn,m· ∈ Mp due to (7), the process(∫ t

0

〈sgn(iŷn,ms )(iẑn,ms )∗, diBn,m,ls 〉
)
t∈[0,T ]

is an (Ft,Pn,m
l,i )-martingale by the Burkholder-Davis-Gundy inequality and

Hölder’s inequality. Thus, for each n, m, l ≥ 1, i = 1, . . . , k and 0 ≤ r ≤ t ≤ T ,
by taking the conditional mathematical expectation En,m

l,i [ · |Fr] with respect

to Fr under Pn,m
l,i in both sides of (8), we can get that

(9) En,m
l,i

[
|iŷn,mt |

∣∣Fr] ≤ ãln,m + En,m
l,i

[ ∫ T

t

u(s)ρ(|ŷn,ms |) ds

∣∣∣∣Fr].
Next, in an analogous way to that in the proof of the uniqueness part of

Theorem 7 in Fan, Wang and Xiao [14] we can deduce the desired result of this
step. For readers’ convenience, we provide a sketch of this proof highlighting
the difference. For each l ≥ 1, define ρl(·) : R 7→ R+ by

ρl(x) := sup
y∈R
{ρ(|y|)− l|x− y|}.

It follows from Lemma 1 in Lepeltier and San Martin [18] that ρl(·) is well
defined for l ≥ A, Lipschitz continuous, decreasing in l and converges to ρ(| · |).
For each l ≥ A, let fn,m,lt be the unique solution of the following deterministic
backward differential equation (see Proposition 3 in Fan, Wang and Xiao [14]),

(10) fn,m,lt = ãln,m +

∫ T

t

(
u(s)ρl(k · fn,m,ls )

)
ds, t ∈ [0, T ].

Noticing that ρl is decreasing in l, and ãln,m is respectively decreasing in n, m

and l, we can deduce that fn,m,lt is also decreasing in n, m and l respectively,

which implies that fn,m,lt converges point wisely to a function ft as n, m, l→∞
(see Proposition 5 in Fan, Wang and Xiao [14]). Thus, by sending n, m, l→∞
in (10), the Lebesgue dominated convergence theorem leads to that

ft =

∫ T

t

(
u(s)ρ(|k · fs|)

)
ds =

∫ T

t

(
u(s)ρ(k · fs)

)
ds, t ∈ [0, T ].

Recalling that ρ(·) ∈ S and
∫
0+

1/ρ(u) du =∞, we can derive that ft ≡ 0 (see
Proposition 6 in Fan, Wang and Xiao [14]).

Now, for each l ≥ A, n, m, j ≥ 1 and t ∈ [0, T ], let fn,m,l,jt be defined
recursively as follows:

(11) fn,m,l,1t := C1; fn,m,l,j+1
t := ãln,m +

∫ T

t

(
u(s)ρl(k · fn,m,l,js )

)
ds,

where C1 is defined in (7). Noticing that ρl is Lipschitz continuous, by Proposi-

tion 4 in Fan, Wang and Xiao [14] we know that fn,m,l,jt converges point wisely

to fn,m,lt as j →∞.
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On the other hand, it is easy to verify by induction that for each l ≥ A, n,
m, j ≥ 1 and i = 1, . . . , k,

(12) |iŷn,mt | ≤ fn,m,l,jt ≤ fn,m,l,j0 , t ∈ [0, T ].

Indeed, (12) holds true for j = 1 due to (7). Suppose that (12) holds true for
j ≥ 1. Then, for each t ∈ [0, T ],

u(t)ρ(|ŷn,mt |) ≤ u(t)ρ(k · fn,m,l,jt ) ≤ u(t)ρl(k · fn,m,l,jt ).

In view of (9) with r = t as well as (11), we deduce that (12) holds for j + 1.
Finally, by taking supermum with respect to t and then sending j, l, n,

m→∞ successively in (12), we obtain that for each i = 1, 2, . . . , k,

(13) lim
n,m→∞

sup
t∈[0,T ]

|iynt − iymt | = 0,

which together with (7) implies that {(yn· − y1· )}∞n=1 converges in the space Sp
to some (Yt)t∈[0,T ]. Then we can deduce that {yn· }∞n=1 converges to y· := Y·+y

1
·

in the space Sq since y1· belongs to it.
Second Step: In this step, we show the convergence of {zn· }∞n=1 in Mq.
It follows from (6) and (4) that dP×dt - a.e., for each n, m, l ≥ 1, y ∈ Rk

and z ∈ Rk×d,

〈y, ĝn,m(t, y, z)〉 ≤ (l + 2A)u(t)|y|2 + (l + 2A)v(t)|y||z|+ |y|Hn,m
l (t),

where

Hn,m
l (t) := u(t)ρ

(
2A

l + 2A

)
+ 1Dv(t)φ

((
2A

l + 2A

)α)
+ an(t) + am(t).

Here we note that Hn,m
l (·) is non-increasing with respect to n, m and l, re-

spectively. Hence, the generator ĝn,m satisfies assumption (H) with µ(t) =
(l + 2A)u(t), λ(t) = (l + 2A)v(t) and ft = Hn,m

l (t). Then by (2) in Proposi-
tion 2.1 we know that there exist two constants C1

l > 0 depending on q, l, A,∫ T
0
u(t) dt and

∫ T
0
v2(t) dt and C2 > 0 depending only on q such that

E

[(∫ T

0

|znt −zmt |2 dt

)q/2]
≤ C1

l E

[
sup
t∈[0,T ]

|ynt −ymt |q
]

+C2

(∫ T

0

Hn,m
l (t) dt

)q
.

Recalling that {yn· }∞n=1 is a Cauchy sequence in Sq and ρ(·), φ(·) ∈ S, by
sending first n, m→∞ then l→∞ in the previous inequality we deduce that

lim
n,m→∞

E

[(∫ T

0

|znt − zmt |2 dt

)q/2]
= 0.

That is to say, {zn· }∞n=1 is a Cauchy sequence in the space Mq. We denote the
limit by (zt)t∈[0,T ].

Third Step: This step aims to show (yt, zt)t∈[0,T ] is a solution of BSDE
(ξ, T, g) in the space Sq ×Mq.
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We have known that the sequence {ynt }∞n=1 and {
∫ T
t
zns dBs}∞n=1 converge in

Lq(FT ; Rk), uniformly with respect to t, toward to yt and
∫ T
t
zs dBs, respec-

tively. Next let us check the limit of gn(s, yns , z
n
s ) in BSDE (ξ, T, gn). It is clear

that there exists a positive constant cq depending only on q such that

E

[
sup
t∈[0,T ]

(∫ T

t

|gn(s, yns , z
n
s )− g(s, ys, zs)|ds

)q]
≤ cqE

[(∫ T

0

|gn(s, yns , z
n
s )− g(s, yns , z

n
s )|ds

)q]
+ cqE

[(∫ T

0

|g(s, yns , z
n
s )− g(s, ys, zs)|ds

)q]
.(14)

It follows from (5) that the first term on the right hand side of (14) converges
to 0 as n → ∞. Furthermore, by (H1), (H2)α and (4) we see that for each n,
l ≥ 1,

E

[(∫ T

0

|g(s, yns , z
n
s )− g(s, ys, zs)|ds

)q]
≤ cq(l + 2A)qE

[(∫ T

0

(
u(s)|yns − ys|+ v(s)|zns − zs|

)
ds

)q]
+ cq

(∫ T

0

[
u(s)ρ

(
2A

l + 2A

)
+ 1Dv(s)φ

((
2A

l + 2A

)α)]
ds

)q
.(15)

Note that the second term on the right hand side of (15) converges to 0 as
l→∞. On the other hand, it follows from Hölder’s inequality that

E

[(∫ T

0

(
u(s)|yns − ys|+ v(s)|zns − zs|

)
ds

)q]
≤ cq

(∫ T

0

u(s) ds

)q
E

[
sup
t∈[0,T ]

|ynt − yt|q
]

+ cq

(∫ T

0

v2(s) ds

)q/2
E

[(∫ T

0

|zns − zs|2 ds

)q/2]
.

Thus, by virtue of the fact that {(yn· , zn· )}∞n=1 is a Cauchy sequence in Sq×Mq,
letting n→∞ then l→∞ in (15) and letting n→∞ in (14) yield that

lim
n→∞

E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ T

t

gn(s, yns , z
n
s ) ds−

∫ T

t

g(s, ys, zs) ds

∣∣∣∣q] = 0.

Subsequently, by passing to the limit in BSDE (ξ, T, gn) under the sense of
uniform convergence in probability we can conclude the desired result. �

Remark 4.2. We would like to mention that the constant q in Proposition 4.1
may satisfy 0 < q < 1 or q > 1. This allows Proposition 4.1 to handle both Lp

(p > 1) solutions and L1 solutions.
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The following corollary of Proposition 4.1 interprets the uniqueness for so-
lutions of the BSDEs, which is useful to the proof of our main result.

Corollary 4.3. Assume that α ∈ (0, 1], p > 1, 0 < q ≤ p, (H1), (H2)α and
(H3) hold for g, and (yt, zt)t∈[0,T ] and (y′t, z

′
t)t∈[0,T ] are two solutions of BSDE

(ξ, T, g) in Sq ×Mq. If (yt − y′t)t∈[0,T ] belongs to Sp, then we have y· = y′· and
z· = z′·.

Proof. Let assumptions hold and (H1), (H2)α and (H3) hold for g with parame-
ters u(·), v(·), ρ(·) and φ(·). By letting gn ≡ g, y2n−1· = y′·, z

2n−1
· = z′· , y

2n
· = y·

and z2n· = z· for each n ≥ 1 in Proposition 4.1, we deduce that (y2n· − y2n−1· )
and (z2n· − z2n−1· ) converge to 0 respectively in Sq and Mq as n → ∞, which
means that y· = y′· and z· = z′· . �

Next we introduce the following proposition, which is actually a direct corol-
lary of Lemma 12 in Fan, Wang and Xiao [14] in view of Remark 3.1.

Proposition 4.4. Assume that α ∈ (0, 1] and the generator g satisfies (H1),
(H2)α and (H3) with parameters u(·), v(·), ρ(·) and φ(·). Then there exists a
generator sequence {gn}∞n=1 such that (H3) is fulfilled for each gn, and dP×
dt - a.e., for each n ≥ 1, y, y1, y2 ∈ Rk and z, z1, z2 ∈ Rk×d, we have

|gn(t, y, z)| ≤ |g(t, 0, 0)|+ kA(u(t) + 2v(t)) + kAu(t)|y|+ kAv(t)|z|,(16)

|gn(t, y1, z1)− gn(t, y2, z2)| ≤ ku(t)ρ(|y1 − y2|) + kv(t)φ(|z1 − z2|α),(17)

|gn(t, y1, z1)− gn(t, y2, z2)| ≤ k(n+A)
(
u(t)|y1 − y2|+ v(t)|z1 − z2|

)
.(18)

Moreover, there exists a non-increasing function sequence bn(·) : [0, T ] 7→ R+

with
∫ T
0
bn(t) dt → 0 as n → ∞ such that dP×dt - a.e., for each y ∈ Rk and

z ∈ Rk×d,

(19) |gn(t, y, z)− g(t, y, z)| ≤ bn(t).

Now we can start to prove our main result — Theorem 3.2.

Proof of Theorem 3.2. Let 0 ≤ T ≤ ∞, p ≥ 1, α ∈ (0, 1] and (A1), (H1), (H2)α
and (H3) hold for g with parameters u(·), v(·), ρ(·) and φ(·).

Assertion (i). Let p > 1. Setting q = p = p in Corollary 4.3 yields the
uniqueness result. Now, we consider the existence part. By Proposition 4.4
we can find a generator sequence {gn}∞n=1 satisfying (H3) and (16) – (19). It
follows from (16) – (18) that gn satisfies (A1), (A2), (A4) and (A5) for each
n ≥ 1. And from (17) we derive that dP×dt - a.e., for each n ≥ 1 and y ∈ Rk,

|gn(t, y, 0)− gn(t, 0, 0)| ≤ ku(t)ρ(|y|),

which means that (A3) is fulfilled by gn. Then it follows from (i) in Proposi-
tion 2.3 that for each n ≥ 1, the following BSDE:

ynt = ξ +

∫ T

t

gn(s, yns , z
n
s ) ds−

∫ T

t

zns dBs, t ∈ [0, T ],
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admits a unique solution (ynt , z
n
t )t∈[0,T ] in Sp × Mp. Thus, taking q = p in

Proposition 4.1 and noting that (17), (H3) and (19) hold for gn, we can conclude
that {(yn· , zn· )}∞n=1 converges to a pair of (yt, zt)t∈[0,T ] in Sp×Mp, which is the
desired solution of BSDE (1).

Assertion (ii). Let p = 1 and α ∈ (0, 1). We first treat the uniqueness part.
Assume that (yt, zt)t∈[0,T ] and (y′t, z

′
t)t∈[0,T ] are two solutions of BSDE (1) such

that for some β ∈ (α, 1), both (yt)t∈[0,T ] and (y′t)t∈[0,T ] are of class (D), and

(zt)t∈[0,T ] and (z′t)t∈[0,T ] belong to Mβ . According to Corollary 4.3, in order

to prove the uniqueness, it suffices to show that (yt − y′t)t∈[0,T ] ∈ Sp for some
p > 1.

In fact, let us fix n ≥ 1 and denote τn the (Ft)-stopping time

τn := inf

{
t ≥ 0 :

∫ t

0

(|zs|2 + |z′s|2) ds ≥ n
}
∧ T.

Tanaka’s formula gives that for each n ≥ 1 and t ∈ [0, T ], setting ŷ· := y· − y′·
and ẑ· := z· − z′· ,

|ŷt∧τn | ≤ |ŷτn |+
∫ τn

t∧τn
|ŷs|−11|ŷs|6=0〈ŷs, g(s, ys, zs)− g(s, y′s, z

′
s)〉ds

−
∫ τn

t∧τn
|ŷs|−11|ŷs|6=0〈ŷs, ẑs dBs〉.(20)

It follows from (H1) and (H2)α that, dP×ds - a.e.,

|ŷs|−11|ŷs|6=0〈ŷs, g(s, ys, zs)− g(s, y′s, z
′
s)〉 ≤ u(s)ρ(|ŷs|) + v(s)φ(|ẑs|α).

Plugging the previous inequality into (20) and taking the conditional mathe-
matical expectation with respect to Ft, we deduce that for each n ≥ 1 and
t ∈ [0, T ],

|ŷt∧τn | ≤ E

[
|ŷτn |+

∫ τn

t∧τn

(
u(s)ρ(|ŷs|) + v(s)φ(|ẑs|α)

)
ds

∣∣∣∣Ft].
Now sending n→∞ and noticing that τn → T , (ŷt)t∈[0,T ] belongs to class (D)
and dP-a.s., ŷT = 0, we can derive that for each t ∈ [0, T ],

|ŷt| ≤ E

[ ∫ T

t

(
u(s)ρ(|ŷs|) + v(s)φ(|ẑs|α)

)
ds

∣∣∣∣Ft]
≤ A

∫ T

0

(
u(s) + v(s)

)
ds+AE

[ ∫ T

t

u(s)|ŷs|ds
∣∣∣∣Ft]

+AE

[ ∫ T

t

v(s)|ẑs|α ds

∣∣∣∣Ft].
Thus, from Fubini’s theorem we get that for each r ∈ [t, T ],

E [|ŷr||Ft] ≤ A
∫ T

0

(
u(s) + v(s)

)
ds+A

∫ T

r

u(s)E [|ŷs||Ft] ds



BSDES WITH TIME-VARYING QUASI-HÖLDER CONTINUITY GENERATORS 681

+AE

[ ∫ T

r

v(s)|ẑs|α ds

∣∣∣∣Ft].
Hence, Gronwall’s inequality induces that for each 0 ≤ r ≤ t ≤ T ,

E [|ŷr||Ft] ≤ AeA
∫ T
0
u(s) ds

(∫ T

0

(
u(s) + v(s)

)
ds+ E

[ ∫ T

0

v(s)|ẑs|α ds

∣∣∣∣Ft]).
Moreover, taking r = t and noticing that β/α > 1, Doob’s and Jensen’s in-
equalities yield that there exists a positive constant Cαβ depending on α, β and
A such that

E

[
sup
t∈[0,T ]

|ŷt|β/α
]
≤ Cαβ + CαβE

[(∫ T

0

v(s)|ẑs|α ds

)β/α]
.

And Hölder’s inequality yields that∫ T

0

v(s)|ẑs|α ds ≤
(∫ T

0

v
2

2−α (s) ds

) 2−α
2
(∫ T

0

|ẑs|2 ds

)α/2
.

Note that
∫ T
0

(v(s) + v2(s)) ds < ∞ implies
∫ T
0
v2/(2−α)(s) ds < ∞. Since

(ẑt)t∈[0,T ] belongs to Mβ , from the previous two inequalities we can deduce

that (ŷt)t∈[0,T ] belongs to the space Sβ/α. Thus, taking q = β and p = β/α in
Corollary 4.3 yields the uniqueness result.

Now we tackle the existence part. Firstly, thanks to Proposition 4.4, there
exists a generator sequence {gn}∞n=1 satisfying (H3) and (16) – (19). Similar
to the proof in assertion (i), we can verify that gn fulfills assumptions (A1) –
(A5) for each n ≥ 1. Moreover, it follows from (17) that dP×dt - a.e., for each
n ≥ 1, y ∈ Rk and z ∈ Rk×d,

|gn(t, y, z)− gn(t, y, 0)| ≤ kv(t)φ(|z|α) ≤ kAv(t)(1 + |z|α),

which indicates that gn fulfills assumption (A6) for each n ≥ 1. Then (ii) in
Proposition 2.3 yields that for each n ≥ 1, the following BSDE

ynt = ξ +

∫ T

t

gn(s, yns , z
n
s ) ds−

∫ T

t

zns dBs, t ∈ [0, T ],

admits a solution (ynt , z
n
t )t∈[0,T ] ∈

⋂
β∈(0,1)(Sβ × Mβ) such that (ynt )t∈[0,T ]

belongs to class (D). Furthermore, it follows from (17) and (19) that dP×
ds - a.e., for each n ≥ 1, setting ŷn,1· := yn· − y1· and ẑn,1· := zn· − z1· ,

|ŷn,1s |−11|ŷn,1s |6=0〈ŷ
n,1
s , gn(s, yns , z

n
s )− g1(s, y1s , z

1
s)〉

≤ ku(s)ρ(|ŷn,1s |) + kv(s)φ(|ẑn,1s |α) + bn(s) + b1(s).

Hence, by the aid of the stopping time technique, arguing as in the above proof
of the uniqueness part and in view of the fact that bn(·) is non-increasing with
respect to n, we can deduce that for each n ≥ 1 and 0 ≤ r ≤ t ≤ T ,

E
[
|ŷn,1r ||Ft

]
≤ kAeA

∫ T
0
ku(s) ds

∫ T

0

(u(s) + v(s) + 2b1(s)) ds
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+ kAeA
∫ T
0
ku(s) dsE

[ ∫ T

0

v(s)|ẑn,1s |α ds

∣∣∣∣Ft].(21)

And we can also prove that In,1 :=
∫ T
0
v(s)|ẑn,1s |α ds belongs to Lγ(FT ; Rk) as

soon as αγ < 1 with γ > 1. Moreover, for some γ > 1 with αγ < 1, taking
r = t in (21) and Doob’s inequality give that there exists a positive constant
cγ depending only on γ, k and A such that

E

[
sup
t∈[0,T ]

|ŷn,1t |γ
]
≤ cγ + cγE[|In,1|γ ] <∞,

which indicates that (ŷn,1t )t∈[0,T ] belongs to the space Sγ for some γ > 1.
Then in view of (17), (H3) and (19), we can apply Proposition 4.1 with taking
q = β and p = γ to obtain that {(yn· , zn· )}∞n=1 converges to some (yt, zt)t∈[0,T ]

in Sβ × Mβ for each β ∈ (0, 1), which solves BSDE (1). Moreover, note by
(13) that {(yn· − y1· )}∞n=1 converges in Sγ . Since (ynt )t∈[0,T ] belongs to class
(D) and the convergence in Sγ with γ > 1 is stronger than the convergence
under the norm ‖ · ‖1, we can get that {yn· }∞n=1 also converges to (yt)t∈[0,T ]

under ‖ · ‖1. Therefore, (yt, zt)t∈[0,T ] is exactly the desired solution of BSDE

(1), which belongs to
⋂
β∈(0,1)(Sβ ×Mβ) and (yt)t∈[0,T ] is of class (D). �
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