JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 4, June 1991

Discontinuous Derivations on the Banach Algebras of Differentiable Functions

KIL-WONG JUN AND DAL-WON PARK

ABSTRACT. This paper studies the structure and continuity of derivations of the Banach algebra $C^n(I)$ of *n* times continuously differentiable functions on an interval *I* into Banach $C^n(I)$ -modules.

1. Introduction

Let $C^n(I)$, I = [0, 1], denote the algebra of all *n* times continuously differentiable complex valued functions on *I*. It is well known that $C^n(I)$ is a Banach algebra under the norm

$$||f||_{n} = \max_{t \in I} \sum_{k=0}^{n} \frac{|f^{(k)}(t)|}{k!}$$

whose structure space is I. We denote the space of bounded linear maps from a Banach space M into M by B(M). A Banach $C^n(I)$ module is a Banach space M together with a continuous homomorphism $\rho: C^n(I) \longrightarrow B(M)$. A derivation, or a module derivation of $C^n(I)$ into M is a linear map $D: C^n(I) \longrightarrow M$ which satisfies the identity

$$D(fg) = \rho(f)D(g) + \rho(g)D(f), \quad f,g \in C^n(I).$$

To measure the discontinuity of a derivation D, one introduces the separating space S(D). This is the subspace of M defined by

$$S(D) = \{m \in M \mid \text{ there exists } \{f_n\} \subset C^n(I), f_n \to 0 \text{ and } D(f_n) \to m\}$$

Received by the editors on 18 June 1991.

¹⁹⁸⁰ Mathematics subject classifications: Primary 46J10.

This research was supported by a grant from the Korea Research Foundation, 1990.

It is easily checked that S(D) is a closed submodule of M and the derivation D is continuous if and only if S(D) = (0). The continuity ideal for a derivation $D: C^n(I) \longrightarrow M$ is

$$\Im(D) = \{ f \in C^n(I) \mid \rho(f)S(D) = (0) \}.$$

Clearly $\Im(D)$ is a closed ideal in $C^{n}(I)$. It is proved in [1, Theorem 3.2], that

$$\Im(D) = \{f \mid D_f \text{ is continuous } \},\$$

where for $f \in C^n(I)$, $D_f(\cdot) = \rho(f)D(\cdot)$. We use the notation

$$M_{n,k}(t_0) = \{ f \in C^n(I) \mid f^{(j)}(t_0) = 0; j = 0, 1, \dots, k \}, \\ 0 \le k \le n, t_0 \in I.$$

These are precisely the closed ideals of finite codimension contained in the maximal ideal $M_{n,0}(t_0)$ of functions vanishing at t_0 .

In 1974 Bade and Curtis [1] proved that if D is a derivation from $C^n(I)$ with singularity set F, then F is finite, say $F = \{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ and

$$\bigcap_{i=1}^{m} M_{n,n}(\lambda_i) \subset \Im(D) \subset \bigcap_{i=1}^{m} M_{n,0}(\lambda_i).$$

If $D: C^n(I) \longrightarrow M$ is a derivation, we have

$$D(p(z)) = \rho(p'(z))D(z), p \in P,$$

where P is the dense subalgebra of polynomials in z. If D is continuous, it is completely determined by this formula. Thus a continuous derivation D is uniquely determined by the vector D(z) [2]. We need to define the notion of the k-differential subspace of a Banach $C^{n}(I)$ -module, a concept first introduced by Kantorovitz who named it "semisimplicity manifold" [3, 4].

DEFINITON 1.1. Let M be a Banach $C^n(I)$ -module. The k-differential subspace is the set W_k (k = 0, 1, ..., n) of all vectors m such that the map

$$p \longrightarrow \rho(p')m$$

is continuous for the $C^{n-k+1}(I)$ norm on P.

We quote the following results.

LEMMA 1.2 ([6, Lemma 3.2]). Let M be a $C^n(I)$ -module. A vector m lies in the k-differential subspace W_k if and only if the map

$$p \longrightarrow \rho(p)m$$

is continuous for the $C^{n-k}(I)$ norm on P.

THEOREM 1.3 (cf. [2, Theorem 4.4]). Let M be a $C^n(I)$ module with k-differential subspace W_k . For $m \in W_k$ $(0 \le k \le n)$, we define $|||m|||_k = \sup\{||\rho(p)m|| \mid ||p||_{n-k} \le 1\}$. Then

- (1) $||m|| \leq |||m|||_0 \leq |||m|||_1 \leq \cdots \leq |||m|||_k, m \in W_k$
- (2) W_k is a Banach space under the norm $||| \cdot |||_k$,
- (3) W_k is a $C^n(I)$ -module and there exists a unique continuous homomorphism

$$\gamma_k: C^{n-k}(I) \longrightarrow B(W_k)$$

such that $\gamma_k(p)m = \rho(p)m, m \in W_k, p \in P$,

(4) If $S \in B(W_k)$ and $S\rho(z) = \rho(z)S$, then $SW_k \subset W_k$ and $|||S|||_k \leq ||S||$, where $|||S|||_k$ is norm of S in $B(W_k)$.

Recall that the ascent of an eigenvalue λ for a linear operator T is the smallest integer k such that $(T - \lambda I)^{k+1}m = 0$ implies $(T - \lambda I)^k m = 0$.

THEOREM 1.4 (cf. [2, Theorem 3.1]). If $\gamma_k : C^{n-k}(I) \longrightarrow B(W_k)$ is a continuous homomorphism, every eigenvalue which lies in I for $\gamma_k(z)$ has ascent at most n - k + 1.

LEMMA 1.5 ([5, Lemma 5.4]). Let $\lambda \in I$ and suppose $f \in M_{n,k-1}(\lambda)$ for some k = 1, 2, ..., n. Then

$$|\frac{f^{(k-m)}(t)}{(t-\lambda)^m}| \le ||f^{(k)}||_{\infty}$$

for every $t \in I - \{\lambda\}(m = 0, 1, ..., k)$.

THEOREM 1.6 ([2, Theorem 3.2]). Let $D : C^n(I) \longrightarrow M$ be a discontinuous derivation. Then

$$\cap \{M_{n,n-1}(\lambda) \mid \lambda \in hull(\mathfrak{I}(D))\} \subset \mathfrak{I}(D).$$

A nontrivial derivation $D : C^n(I) \longrightarrow M$ is called singular if Dvanishes on P (equivalently D(z) = 0). A singular derivation is necessarily discontinuous. A derivation D is decomposable if D can be expressed in the form D = E + F, where E is continuous and F is singular. Such a splitting is unique. It was shown in [2] that a derivation $D: C^n(I) \longrightarrow M$ is decomposable if and only if $D(z) \in W_1$.

2. Main Results

Let $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ be the hull of a discontinuous derivation Dfrom $C^n(I)$ into a Banach $C^n(I)$ -module M. Choose $e_k \in C^n(I)$, $1 \leq k \leq m$, such that $e_k(\lambda) = 1$ in the neighborhood U_k of λ_k , $e_i = 0 \ (i \neq k)$ in the neighborhood V_k of λ_k such that $V_k^- \subset U_k$ and $\sum_{i=1}^m e_i(\lambda) \neq 0$ for all $\lambda \in I$. Let $e_0 = 1 - \sum_{i=1}^m e_i$. Then

$$e_0 \in \bigcap_{i=1}^m M_{n,n}(\lambda_i) \subset \Im(D)$$

and

$$D(f) = \sum_{i=0}^{m} \rho(e_i) D(f), \quad f \in C^n(I).$$

Let $D_i(\cdot) = \rho(e_i)D(\cdot)$. Then D_0 is continuous and D_i (i = 1, 2, ..., m) is discontinuous. We have hull $(\Im(D_i)) = \{\lambda_i\}(i = 1, 2, ..., m)$ and

$$\Im(D) = \bigcap_{i=1}^m \Im(D_i).$$

LEMMA 2.1. Let $D : C^n(I) \longrightarrow M$ be a discontinuous derivation with hull $(\Im(D)) = \{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ and let $1 \le k \le n$. Then $D(z) \in W_k$ and $\bigcap_{i=1}^m M_{n,n-k}(\lambda_i) \subset \Im(D)$ if and only if $D_i(z) \in W_k$ and $M_{n,n-k}(\lambda_i) \subset \Im(D_i)$ for each $i, 1 \le i \le m$.

PROOF: Suppose $D(z) \in W_k$ and $\bigcap_{i=1}^m M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D)$. By Theorem 1.3, $D_i(z) = \rho(e_i)D(z) \in W_k$. If $g \in M_{n,n-k}(\lambda_i)$, then $\rho(g)D_i(\cdot)$ is continuous. Thus $M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D_i)$.

Conversely, suppose $M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D_i)$ and $D_i(z) \in W_k$. From $\mathfrak{I}(D) = \bigcap_{i=1}^m \mathfrak{I}(D_i)$, it follows that

$$\bigcap_{i=1}^{m} M_{n,n-k}(\lambda_i) \subset \Im(D).$$

Since $\rho(1-e_0)(\lambda) \neq 0$ for all $\lambda \in I$, we have $(1-e_0)^{-1} \in C^n(I)$. By Theorem 1.3, $D(z) \in W_k$.

94

THEOREM 2.2. Let $D: C^n(I) \longrightarrow M$ be a discontinuous derivation and let $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ be the hull of $\mathfrak{I}(D), 1 \leq k \leq n$. Then $S(D) \subset W_k$ if and only if $\bigcap_{i=1}^m M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D)$.

PROOF: Suppose $S(D) \subset W_k$. Then by Theorem 3.2 of [2], for $x \in S(D)$,

$$\rho((z-\lambda_1)^n(z-\lambda_2)^n\cdots(z-\lambda_m)^n)x=0.$$

Put $y = \rho((z - \lambda_2)^n (z - \lambda_3)^n \cdots (z - \lambda_m)^n) x$. By Theorem 1.3, we see $y \in W_k$. Using Theorem 1.4, we have $\rho(z - \lambda_1)^{n-k+1} y = 0$. If we continue this process for $\lambda_2, \ldots, \lambda_m$, then

$$\rho((z-\lambda_1)^{n-k+1}(z-\lambda_2)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1})x=0.$$

So $(z-\lambda_1)^{n-k+1}(z-\lambda_2)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1}\in \mathfrak{I}(D)$. Since $\mathfrak{I}(D)$ is a closed ideal,

$$\bigcap_{i=1}^{m} M_{n,n-k}(\lambda_i) \subset \Im(D).$$

Conversely, suppose $\bigcap_{i=1}^{m} M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D)$. By Lemma 2.1, $M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D_i)$, for each $i, 1 \leq i \leq m$. Since $S(D) \subset S(D_1) + S(D_2) + \cdots + S(D_m)$, we may assume that D has the point zero for its singularity set. If $x \in S(D)$, then $\rho(z^{n-k+1})x = 0$. For any polynomial p,

$$\|\rho(p)x\| = \|\rho(p(0) + p'(0)z + \dots + \frac{p^{(n-k)}(0)}{(n-k)!}z^{n-k})x\|$$

$$\leq C\|p\|_{n-k}, C > 0.$$

Hence $x \in W_k$.

COROLLARY 2.3. Let $D: C^n(I) \longrightarrow M$ be a derivation. Then $S(D) \subset W_1$.

PROOF: It is easily proved by Theorem 1.6.

THEOREM 2.4. Let $D : C^n(I) \longrightarrow M$ be a derivation with hull $(\Im(D)) = \{\lambda_1, \lambda_2, ..., \lambda_m\}$. If $\bigcap_{i=1}^m M_{n,n-k}(\lambda_i) \subset \Im(D)$, k =

1,2,...,n, then $D|_{C^{2n-k+1}(I)}$ is continuous for the $C^{2n-k+1}(I)$ norm.

PROOF: We may assume that D has a singleton singularity set $\{0\}$ and $M_{n,n-k}(0) \subset \mathfrak{I}(D)$. Let $f \in M_{2n-k+1,2n-k+1}(0)$ and define $g = z^{-n+k-1}f$. Then $g \in M_{n,n}(0)$. By Lemma 1.5,

$$\begin{split} ||g||_{n} &= \sup_{t \neq 0} \sum_{i=0}^{n} \frac{1}{i!} |(\frac{f}{z^{n-k+1}})^{(i)}(t)| \\ &\leq \sup_{t \neq 0} \sum_{i=0}^{n} \sum_{j=0}^{i} C_{i,j} |\frac{f^{(i-j)}(t)}{t^{n-k+1+j}}| (C_{i,j} > 0) \\ &\leq \sup_{t \neq 0} \sum_{i=0}^{n} \sum_{j=0}^{i} C_{i,j} ||f^{n-k+1+i}||_{\infty} \\ &\leq C ||f||_{2n-k+1}, \quad C > 0. \end{split}$$

Hence

$$||D(f)|| = ||\rho(z)^{n-k+1}D(g) + \rho(g)D(z^{n-k+1})||$$

$$\leq C'||g||_n$$

$$\leq CC'||f||_{2n-k+1}, \quad C' > 0.$$

COROLLARY 2.5. Let $D: C^n(I) \longrightarrow M$ be a derivation. Then $D|_{C^{2n}(I)}$ is continuous for the $C^{2n}(I)$ norm.

THEOREM 2.6. Let $D: C^n(I) \longrightarrow M$ be a derivation and let $1 \le k \le n$. Then $D(z) \in W_k$, $S(D) \subset W_k$ if and only if the image of D is contained in W_k .

PROOF: Suppose $D(z) \in W_k$ and $S(D) \subset W_k$. For $f \in C^n(I)$, there exists $\{p_\ell\}$ in P such that $p_\ell \to f$. Since $p_\ell - f \to 0$,

$$\lim_{\ell \to \infty} D(p_{\ell} - f) = \lim_{\ell \to \infty} D(p_{\ell}) - D(f) \in W_k.$$

By Theorem 1.3, we have

$$\lim_{\ell \to \infty} D(p_{\ell}) = \lim_{\ell \to \infty} \rho(p_{\ell}') D(z) = \gamma_1(f') D(z) \in W_k.$$

So $D(f) \in W_k$.

Conversely, suppose $D(C^n(I)) \subset W_k$. Since $D(z) \in W_1$, D = E + Fwhere E is continuous and F is singular. For $f \in C^n(I)$,

$$\rho((z-\lambda_1)^n(z-\lambda_2)^n\cdots(z-\lambda_m)^n)F(f)=0$$

where $\{\lambda_1, \lambda_2, \dots, \lambda_m\} = hull(\Im(D))$. Since $F(f) \in W_k$,

$$\rho((z-\lambda_1)^{n-k+1}(z-\lambda_2)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1})F(f)=0.$$

Thus $\bigcap_{i=1}^{m} M_{n,n-k}(\lambda_i) \subset \mathfrak{I}(D)$. If $x \in S(D)$, then there exists $\{f_\ell\}$ in $C^n(I)$ such that $f_\ell \to 0$ and $Df_\ell \to x$. Thus $F(f_\ell) \to x$ and

$$\rho((z-\lambda_1)^{n-k+1}(z-\lambda_2)^{n-k+1}\cdots(z-\lambda_m)^{n-k+1})x=0.$$

So $x \in W_k$.

REFERENCES

- [1] W. G. Bade and P. C. Curtis, Jr., The continuity of derivations of Banach algebra, J. Funct. Anal. 16 (1974), 372-387.
- [2] W. G. Bade and P. C. Curtis, Jr., The structure of module derivations of Banach algebras of differentiable functions, J. Funct. Anal. 28 (1978), 226-247.
- [3] S. Kantorovitz, The semi-simplicity manifold of arbitrary operators, Trans. Amer. Math. Soc. 123 (1966), 241-252.
- [4] S. Kantorovitz, "Spectral theory of Banach space operators," Springer-Verlag and New York, 1983.
- [5] K. B. Laursen, A structure theorem for discontinuous derivations of Banach algebras of differential functions, Proc. Amer. Math. Soc. 102 (1988), 507-513.
- [6] Kil-Woung Jun, Young-Whan Lee and Dal-Won Park, The continuity of derivations and module homomorphism, Bull. Korean Math. Soc. 27 (1990).

Chungnam National University Taejon, 305-764, Korea and Kongju National University Kongju, 314-701, Korea. 97