KYUNGPOOK Math. J. 51(2011), 87-91 DOI 10.5666/KMJ.2011.51.1.087

# A Voronovskaya Type Theorem on Modified Post-Widder Operators Preserving $x^2$

MOHAMMAD ARIF SIDDIQUI Govt. V. Y. T. P. G. Autonomous College Durg(C. G.) e-mail: dr\_m\_a\_siddiqui@yahoo.co.in

RAKSHA RANI AGRAWAL\* M. P. Christian College Of Engg. And Technology Bhilai(C. G.) e-mail: raksha\_mukesh@yahoo.com

ABSTRACT. In this paper we obtain a Voronvskaya type theorem for modified Post-Widder operators.

#### 1. Introduction

The Post-Widder operators

(1) 
$$P_n(f;x) \equiv P_n(f(t);x) := \int_0^\infty f(t)p_n(x,t)dt.x \in I, n \in N,$$

(2) 
$$p_n(x,t) := \frac{(n/x)^n t^{(n-1)}}{(n-1)!} exp\left(\frac{-nt}{x}\right)$$

 $I = (0, \infty), N = \{1, 2, ...\}$  were examined in many papers and monographs(e.g.[2]), for real-valued functions f bounded on I. It is known (Chapter 9, [2]) that  $P_n$  are well defined also for functions  $e_k(x) = x^k, k \in N_0 = N \cup 0$ , for  $x \in I$  and  $n \in N$ . Denoting by

(3) 
$$\varphi_x(t) := t - x \text{ for } t \in I \text{ and a fixed } x \in I,$$

we have

(4) 
$$P_n(\varphi_x^2(t;x)) = \frac{x^2}{n} \text{ for } x \in I, n \in N.$$

\* Corresponding Author.

Received July 20, 2010; accepted October 28, 2010.

2000 Mathematics Subject Classification: 41A25, 41A36.

Key words and phrases: Post-Widder operators, modulus of continuity, The Voronovskaya type theorem.



In papers [6] was examined approximation properties certain modified Post-Widder operators for differentiable functions in polynomial weighted spaces. In [7] were investigated modified Post-Widder operators  $P_n^*$  preserving the function  $e_2(x) = x^2$  and was proved that these operators have better approximation properties than classical Post-Widder operators. The similar results were given for certain positive linear operators in the paper [3], [4] and [5].

The purpose of this paper is to give a Voronovskaya type theorem for modified Post-Widder operators  $P_n^*$  preserving  $e_2(x) = x^2$  in polynomial weighted spaces which is given in [7]. These operators have better approximation properties than  $P_n$  given by (1). The definition and some properties of operators  $P_n^*$  will be given in section 2. The main theorems will be given section 3.

#### 2. The definition and elementary properties of $P_n^*$

2.1. We introduce for  $f \in C_r, r \in N_0,$  the following modified Post-Widder operators  $P_n^*$ 

(5) 
$$P_n^*(f;x) := \int_0^\infty f(t)p_n(u_n(x),t)dt = P_n(f;u_n(x)).x \in I, n \in N,$$

where  $P_n(f)$  and  $p_n$  are given by (1) and (2) and

(6) 
$$u_n(x) := \sqrt{\frac{n}{n+1}} x, \quad 0 < u_n(x) < x, \text{ for } x \in I, n \in N.$$

From (5)-(6) we immediately obtain the following lemma:

**Lemma 2.1.** Let  $e_k(x) = x^k$  for  $k \in N_0$  and  $x \in I$ . Then for all  $x \in I$  and  $n \in N$  we have

(7) 
$$P_n^*(e_0; x) = 1, P_n^*(e_1; x) = u_n(x), P_n^*(e_2; x) = x^2.$$

The formulas (7) show that  $P_n^*$  preserve the functions  $e_0$  and  $e_2$ .

Now, fix b > 0 and consider the lattice homomorphism  $T_b : C[0, +\infty) \to C[0, b]$  defined by  $T_b(f) := f ||_{[0, b]}$  for every  $f \in C[0, +\infty)$ . In this case, we see that, for each i = 0, 1, 2.

$$\lim_{n \to \infty} T_b\left(P_n^*(e_i)\right) = T_b(e_i)$$

uniformly on [0,b]. On the other hand, with the universal Korovkin type property with respect to monotone operators (see Theorem 4.1.4 (vi) of[1], p.199) we have the following : Let X be a compact set and H be a confinal subspace of C(X). If E a Banach lattice,  $S : (X) \to E$  is a lattice homorphism and if  $\{L_n\}$  is a sequence of positive linear operators from C(X) into E such that  $\lim_{n\to\infty} (L_n)(h) = S(h)$  for all  $h \in H$ , then  $\lim_{n\to\infty} (L_n(f) = f)$  provided that f belongs to the Korovkin closure of H. A Voronovskaya Type Theorem on Modified Post-Widder Operators preserving  $x^2$  89

#### Convergence theorem

**Theorem 1.** Let the sequence  $\{P_n^*\}$  of positive linear operators given by (5), and the sequence  $u_n(x)$  defined by (6). Then, (i)  $P_n^*$  is a positive linear operators on  $C_r(I)$ (ii)  $P_n^*(e_2; x) = e_2(x) = x^2$ (iii)  $\lim_{n \to \infty} (P_n^*)f \to f$  uniformly [0, b] for any b > 0.

Hence using limit and applying [1] the theorem follows.

**Lemma 2.2.** For every  $x \ge 0$ , we have

(8) 
$$P_n^*(\varphi_x; x) = x\sqrt{\frac{n}{n+1}} - x,$$

(9) 
$$P_n^*(\varphi_x^2; x) = 2x^2 \left[ 1 - \sqrt{\frac{n}{n+1}} \right],$$

(10) 
$$P_n^*(\varphi_x^3; x) = 2x^3 \left[ 2\sqrt{\frac{n}{n+1}} + \frac{1}{\sqrt{n(n+1)}} - 1 \right],$$

(11) 
$$P_n^*(\varphi_x^4; x) = x^4 \left[ \frac{(n+2)(n+3)}{n(n+1)} - 8\sqrt{\frac{n+1}{n}} + 7 \right].$$

*Proof.* By linearity of  $P_n^*$  we have

$$P_n^*(\varphi_x^2(t;x)) = P_n^*(e_2;x) - 2xP_n^*(e_1;x) + x^2P_n^*(e_0;x)$$
$$= x^2 - 2xu_n + x^2$$
$$= 2x(x - u_n).$$

by (6) we get

$$P_n^*(\varphi_x^2(t;x)) = 2x^2 \left[1 - \sqrt{\frac{n}{n+1}}\right]$$

similarly we obtain other results.

### 3. A Voronovskaya type theorem

In this section, we prove a Voronovskaya type theorem for the operators  $P_n^*$  given by (5).

We first need the following lemmas.

**Lemma 3.1.**  $\lim_{n \to \infty} n(x - u_n(x)) = \frac{x}{2}$ . *Proof.* 

$$\lim_{n \to \infty} n \left( x - u_n(x) \right) = \left[ x - x \sqrt{n/n + 1} \right]$$
$$= \frac{nx}{n + 1 + \sqrt{n^2 + n}}$$
$$= \frac{x}{2}.$$

**Lemma 3.2.**  $\lim_{n\to\infty} n^2 P_n^* (\varphi_x^4 x) = 3x^4$  uniformly with respect to  $x \in [0,b]$  with b > 0.

*Proof.* Then by using Lemma(2.2) and after some calculations, we may write that

$$\begin{split} n^2 P_n^* \left( \varphi_x^4; x \right) &= x^4 \left[ \frac{n(n+1)(n+3)}{n+1} - 8n\sqrt{n(n+1)} + 7n^2 \right] \\ &= x^4 \left[ \frac{4n^2 + 6n}{n+1} - \frac{8n^2}{n + \sqrt{n(n+1)}} \right] \\ &= x^4 \left[ \frac{6n}{n+1} - \frac{12n^3 + 16n^2}{(n+1)(n + \sqrt{n^2 + n}(\sqrt{n^2 + n} + n + 2))} \right] \\ &= 3x^4 \end{split}$$

**Theorem 2.** For every  $f \in C_r$  such that  $f', f'' \in C_r$  we have

$$\lim_{n \to \infty} n \left[ P_n^*(f; x) - f(x) \right] = x/2 \left[ x f''(x) - f'(x) \right]$$

uniformly with respect to  $x \in [0, b], (b > 0)$ . Proof. Let  $f, f', f'' \in C_r$ . Define

$$\psi(y,x) = \begin{cases} \frac{f(y) - f(x) - (y-x)f'(x) - \frac{1}{2}(y-x)^2 f''(x)}{(y-x)^2}, & \text{if } y \neq x; \\ 0, & \text{if } y = x. \end{cases}$$

Then by assumption we have  $\psi(x, x) = 0$  and the function  $\psi(., x)$  belongs to  $C_r$ . Hence, by Taylor's theorem we get

$$f(y) = f(x) + (y - x)f'(x) + \frac{(y - x)^2}{2}f''(x) + (y - x)^2\psi(y, x).$$

Now from Lemma (2.2)

(12)  $n[P_n^*(f;x) - f(x)] = n(x - u_n(x))(xf^*(x) - f'(x)) + nP_n^*(\varphi_x^2(y)\psi(y,x);x)$ 

90

If we apply the Cauchy-Schwarz inequality for the second term on the right hand side of (12), then we conclude that

(13) 
$$n \left| P_n^*(\varphi_x^2(y)\psi(y,x);x) \right| \le (n^2 P_n^*(\varphi_x^4(y);x))^{\frac{1}{2}} (P_n^*(\psi^2(y,x);x))^{\frac{1}{2}}$$

Let  $\eta(y,x) := \psi^2(y,x)$ . In this case, observe that  $\eta(x,x) = 0$  and  $\eta(.,x) \in C_r$ . Then it follows from Theorem 1. that

(14) 
$$\lim_{n \to \infty} P_n^* \left( \psi^2(y, x); x \right) = \lim_{n \to \infty} P_n^* \left( \eta(y, x); x \right) = \eta(x, x) = 0$$

uniformly with respect to  $x \in [0, b], (b > 0)$ . Now considering (13) and (14), and also using lemma 3.2, we immediately see that

(15) 
$$\lim_{n \to \infty} n P_n^* \left( \varphi_x^2(y) \psi(y, x); x \right) = 0$$

uniformly with respect to  $x \in [0, b]$ . Then taking limit as  $n \to \infty$  in (12) and using (15) we have

$$\lim_{n \to \infty} n \left[ P_n^*(f; x) - f(x) \right] = x/2 \left[ x f''(x) - f'(x) \right],$$

uniformly with respect to  $x \in [0, b]$ . The proof is completed.

## References

- Altomare F., Campiti M., Korovkin-type Approximation Theory and its Application, in: Walter de Gruyter Studies in Math., vol. 17, de Gruyter and Co., Berlin, 1994.
- [2] Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, New York, 1987.
- [3] Duman O., Ozarslan M. A., Szasz-Mirakjan type operators providing a better error estimation, Applied Math. Letters, 20(2007) 1184-1188.
- [4] Duman O., Ozarslan M. A., MKZ type operators providing a better estimation on [1/2, 1), Canadian Math. Bull., 50(2007), 434-439.
- [5] King J. P., Positive linear operators which preserve  $x^2$ , Acta Math. Hungar., **99**(3)(2003), 203-208.
- [6] Rempulska L., Skorupka M., On strong approximation applies to Post-Widder operators, Anal. in Theory and Applic., 22(2)(2006), 172-182.
- [7] Rempulska L., Skorupka M., On approximation by Post-Widder operators preserving  $x^2$ , Kyungpook Math. J., **49**(2009), 57-65.