DOI QR코드

DOI QR Code

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal (CSIR-Structural Engineering Research Centre) ;
  • Ramachandra A. Murthy (CSIR-Structural Engineering Research Centre)
  • Received : 2023.10.27
  • Accepted : 2024.01.09
  • Published : 2024.01.25

Abstract

The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

Keywords

Acknowledgement

This paper has been assigned the registration number CSIR-SERC-1043/2023. Authors would like to thanks CSIR-SERC for providing their continuous support for the research. Authors are also grateful to the CSIR, New Delhi, who funded the generous grant for research work.

References

  1. Ambati, M., Gerasimov, T. and Lorenzis, L.D. (2015a), "Phasefield modeling of ductile fracture", Comput. Mech., 55, 1017- 1040. https://doi.org/10.1007/s00466-015-1151-4.
  2. Ambati, M., Gerasimov, T. and Lorenzis, L.D. (2015b), "A review on phase field models of brittle fracture and a new fats hybrid formulation", Comput. Mech., 55, 383-405. https://doi.org/10.1007/s00466-014-1109-y.
  3. Ambati, M., Kruse, R. and Lorenzis, L.D. (2016), "A phase-field model for ductile fracture at finite strains and its experimental verification", Comput. Mech., 57, 149-167. https://doi.org/10.1007/s00466-015-1225-3.
  4. Amiri, F., Millan, D., Arroyo, M., Silani, M. and Rabczuk, T. (2016), "Fourth order phase-field model for local max-ent approximants applied to crack propagation", Comput. Meth. Appl. Mech. Eng., 312, 254-275. https://doi.org/10.1016/j.cma.2016.02.011.
  5. Amor, H., Marigo, J.J. and Maurini, C. (2009), "Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments", J. Mech. Phys. Solid., 57(8), 1209-1229. https://doi.org/10.1016/j.jmps.2009.04.011.
  6. Borden, M.J., Hughes, T.J.R., Landis, C.M and Verhoosel, C.V. (2014), "A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework", Comput. Meth. Appl. Mech. Eng., 273, 100-118. https://doi.org/10.1016/j.cma.2014.01.016.
  7. Borden, M.J., Hughes, T.J., Landis, C.M., Anvari, A. and Lee, I.J. (2016), "A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects", Comput. Meth. Appl. Mech. Eng., 312, 130-66. https://doi.org/10.1016/j.cma.2016.09.005.
  8. Bourdin, B., Francfort, G.A. and Marigo, J.J. (2000), "Numerical experiments in revisited brittle fracture", J. Mech. Phys. Solid., 48(4), 797-826. https://doi.org/10.1016/S0022-5096(99)00028-9.
  9. Bourdin, B., Francfort, G.A. and Marigo, J.J. (2008), "The Variational approach to fracture", J. Elast., 91, 5-148. https://doi.org/10.1007/s10659-007-9107-3.
  10. Boyce, B.L., Kramer, S.L.B., Fang, H.E., Cordova, T.E., Neilsen, M.K., Dion, K., Kaczmarowski, A.K., Karasz, E., Xue, L., Gross, A.J and Ghahremaninezhad, A. (2014), "The Sandia Fracture Challenge: Blind round robin predictions of ductile tearing", Int. J. Fract., 186, 5-68. https://doi.org/10.1007/s10704-013-9904-6.
  11. Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027.
  12. Francfort, G.A. and Marigo, J.J. (1998), "Revisiting brittle fracture as an energy minimization problem", J. Mech. Phys. Solid., 46(8), 1319-1342. https://doi.org/10.1016/S0022-5096(98)00034-9.
  13. Fu, J., Haeri, H., Sarfarazi, V., Marji, M.F. and Guo, M. (2022a), "Investigation of the tensile behavior of joint filling under experimental test and numerical simulation", Struct. Eng. Mech., 81(2), 243-258. https://doi.org/10.12989/sem.2022.81.2.243.
  14. Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., Ebneabbasi, P., Marji, M.F. and Guo, M. (2022b), "Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression", Mech. Adv. Mater. Struct., 29(27), 6966-698. https://doi.org/10.1080/15376494.2021.1989730.
  15. Georgoulis, H. and Houston, P. (2009), "Discontinuous Galerkin methods for the biharmonic problem", IMA J. Numer. Anal., 29(3), 573-594. https://doi.org/10.1093/imanum/drn015.
  16. Goswami, S., Anitescu, C. and Rabczuk, T. (2020), "Adaptive fourth-order phase field analysis for brittle fracture", Comput. Meth. Appl. Mech. Eng., 361, 112808. https://doi.org/10.1016/j.cma.2019.112808.
  17. Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. Trans. Roy. Soc., 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.
  18. Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516. https://doi.org/10.12989/sem.2018.67.5.505.
  19. Hughes, T.J.R., Cottrell, J.A and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
  20. Khandelwal, N. and Murthy, A.R. (2022), "Fracture analysis of single edge notched specimen using phase field approach", Struct., 37, 756-771. https://doi.org/10.1016/j.istruc.2022.01.008.
  21. Khandelwal, N. and Murthy, A.R. (2023), "Ductile fracture simulation using phase field method with various damage models based on different degradation and geometric crack functions", Mater. Today Commun., 35, 105627. https://doi.org/10.1016/j.mtcomm.2023.105627.
  22. Lemaitre, J. (1985), "A Continuous damage mechanics model for ductile fracture", J. Eng. Mater. Technol., 107(1), 83-89. https://doi.org/10.1115/1.3225775.
  23. Li, H., Fu, M.W., Lu, J. and Yang, H. (2011), "Ductile fracture: experiments and computations", Int. J. Plast., 27(2), 147-180. https://doi.org/10.1016/j.ijplas.2010.04.001.
  24. Mediavilla, J., Peerlings, R.H.J. and Geers, M.G.D. (2006), "Discrete crack modelling of ductile fracture driven by non-local softening plasticity", Int. J. Numer. Meth. Eng., 66, 661-688. https://doi.org/10.1002/nme.1572.
  25. Miehe, C., Hofacker, M. and Welschinger, F. (2010), "A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits", Comput. Meth. Appl. Mech. Eng., 199(45-48), 2765-2778. https://doi.org/10.1016/j.cma.2010.04.011.
  26. Miehe, C., Aldakheel, F. and Raina, A. (2016), "Phase field modeling of ductile fracture at finite strains; A variation gradient-extended plasticity-damage theory", Int. J. Plast., 84, 1-32. https://doi.org/10.1016/j.ijplas.2016.04.011.
  27. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)10970207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  28. Molnar, G. and Gravouil, A. (2017), "2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture", Finite Elem. Anal. Des., 130, 27-38. https://doi.org/10.1016/j.finel.2017.03.002.
  29. Msekh, M.A., Sargado, J.M., Jamshidian, M., Areias, P.M. and Rabczuk, T. (2015), "Abaqus implementation of phase-field model for brittle fracture", Comput. Mater. Sci., 96, 472-484. https://doi.org/10.1016/j.commatsci.2014.05.071.
  30. Noorim M., Khanlari, G., Sarfarazi, V., Rafiei, B., Nejati H.R., Imami, M., Schubert, W. and Jahanmiri, S. (2023), "An experimental and numerical study of layered sandstone's anisotropic behaviour under compressive and tensile stress conditions", Rock Mech. Rock Eng., 415, 1-120. https://doi.org/10.1007/s00603-023-03628-1.
  31. Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solid., 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
  32. Seles, K., Lesicar, T., Tonkovic, Z. and Soric, J. (2019), "A residual control staggered solution scheme for the phase-field modeling of brittle fracture", Eng. Frac. Mech., 205, 370-386. https://doi.org/10.1016/j.engfracmech.2018.09.027.
  33. Shahrezaei, M. and Moslemi, H. (2020), "Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement", Struct. Eng. Mech., 75(6), 685-699. https://doi.org/10.12989/sem.2020.75.6.685.
  34. Shemirani, A.B., Haeri, H., Sarfarazi, V., Abbas, A. and Babanour, N. (2018), "The discrete element method simulation and experimental study of determining the mode I stress-intensity factor", Struct. Eng. Mech., 66(3), 379-386. https://doi.org/10.12989/sem.2018.66.3.379.
  35. Svolos. L., Mourad, H.M., Manzini, G. and Garikipati, K. (2022), "A fourth-order phase-field fracture model: Formulation and numerical solution using a continuous/discontinuous Galerkin method", J. Mech. Phys. Solid., 165, 104910. https://doi.org/10.1016/j.jmps.2022.104910.