• Title/Summary/Keyword: $2^{n}-periodic$

Search Result 187, Processing Time 0.019 seconds

ALMOST PERIODIC SOLUTION FOR A n-SPECIES COMPETITION MODEL WITH FEEDBACK CONTROLS ON TIME SCALES

  • Li, Yongkun;Han, Xiaofang
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.247-262
    • /
    • 2013
  • In this paper, using the time scale calculus theory, we first discuss the permanence of a $n$-species competition system with feedback control on time scales. Based on the permanence result, by the Lyapunov functional method, we establish sufficient conditions for the existence and uniformly asymptotical stability of almost periodic solutions of the considered model. The results of this paper is completely new. An example is employed to show the feasibility of our main result.

ON THE COMPUTATION OF THE NON-PERIODIC AUTOCORRELATION FUNCTION OF TWO TERNARY SEQUENCES AND ITS RELATED COMPLEXITY ANALYSIS

  • Koukouvinos, Christos;Simos, Dimitris E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.547-562
    • /
    • 2011
  • We establish a new formalism of the non-periodic autocorrelation function (NPAF) of two sequences, which is suitable for the computation of the NPAF of any two sequences. It is shown, that this encoding of NPAF is efficient for sequences of small weight. In particular, the check for two sequences of length n having weight w to have zero NPAF can be decided in $O(n+w^2{\log}w)$. For n > w^2{\log}w$, the complexity is O(n) thus we cannot expect asymptotically faster algorithms.

Almost Periodic Processes in Ecological Systems with Impulsive Perturbations

  • Stamov, Gani Trendafilov
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.299-312
    • /
    • 2009
  • In the present paper we investigate the existence of almost periodic processes of ecological systems which are presented with nonautonomous N-dimensional impulsive Lotka Volterra competitive systems with dispersions and fixed moments of impulsive perturbations. By using the techniques of piecewise continuous Lyapunov's functions new sufficient conditions for the global exponential stability of the unique almost periodic solutions of these systems are given.

A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS

  • Lee, Eun-Ju;Lee, Sang-Youl;Seo, Myoung-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.919-947
    • /
    • 2009
  • In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C($-2n_1$, $2n_2$, $-2n_3$, ..., $(-1)_r2n_r$) in terms of $n_1$, $n_2$, ..., $n_r$. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link $L^{(3)}$ with rational quotient L = C(2, $n_1$, -2, $n_2$, ..., $n_r$, $(-1)^r2$) for any nonzero integers $n_1$, $n_2$, ..., $n_r$ and give a formula for the span of the Jones polynomial of $L^{(3)}$ in terms of $n_1$, $n_2$, ..., $n_r$ with $n_i{\neq}{\pm}1$ for all i=1, 2, ..., r.

PERIODIC SOLUTIONS FOR A QUASILINEAR NON-AUTONOMOUS SECOND-ORDER SYSTEM

  • Tian Yu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.263-271
    • /
    • 2006
  • In this paper, a quasilinear second-order system with periodic boundary conditions is studied. By the least action principle and classical theorems of variational calculus, existence results of periodic solutions are obtained.

THE NUMBERS OF PERIODIC SOLUTIONS OF THE POLYNOMIAL DIFFERENTIAL EQUATION

  • Zhengxin, Zhou
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.265-277
    • /
    • 2004
  • This article deals with the number of periodic solutions of the second order polynomial differential equation using the Riccati equation, and applies the property of the solutions of the Riccati equation to study the property of the solutions of the more complicated differential equations. Many valuable criterions are obtained to determine the number of the periodic solutions of these complex differential equations.

ON THE DYNAMICAL PROPERTIES OF SOME FUNCTIONS

  • Yoo, Seung-Jae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2003
  • This note is concerned with some properties of fixed points and periodic points. First, we have constructed a generalized continuous function to give a proof for the fact that, as the reverse of the Sharkovsky theorem[16], for a given positive integer n, there exists a continuous function with a period-n point but no period-m points wherem is a predecessor of n in the Sharkovsky ordering. Also we show that the composition of two transcendental meromorphic functions, one of which has at least three poles, has infinitely many fixed points.

  • PDF

DYNAMICS OF COUNTING

  • Kim, June Gi;Song, Young Sun
    • Korean Journal of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 2003
  • In this paper we are going to study the dynamics of counting on the set S of functions from a finite subset of $\mathbb{N}=\{1,2,{\cdots}\}$ into $\mathbb{N}$. We have shown that every point $f{\in}S$ is either an eventually fixed point or an eventually periodic point of period 2 or 3.

  • PDF

ON THE DIFFERENCE EQUATION $x_{n+1}=\frac{a+bx_{n-k}-cx_{n-m}}{1+g(x_{n-l})}$

  • Zhang, Guang;Stevic, Stevo
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.201-216
    • /
    • 2007
  • In this paper we consider the difference equation $$x_{n+1}=\frac{a+bx_{n-k}\;-\;cx_{n-m}}{1+g(x_{n-l})}$$ where a, b, c are nonegative real numbers, k, l, m are nonnegative integers and g(x) is a nonegative real function. The oscillatory and periodic character, the boundedness and the stability of positive solutions of the equation is investigated. The existence and nonexistence of two-period positive solutions are investigated in details. In the last section of the paper we consider a generalization of the equation.