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A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL
OF 2-BRIDGE LINKS AND APPLICATIONS

Eunju Lee, Sang Youl Lee, and Myoungsoo Seo

Abstract. In this paper, we give a recursive formula for the Jones poly-
nomial of a 2-bridge knot or link with Conway normal form C(−2n1,
2n2, −2n3, . . . , (−1)r2nr) in terms of n1, n2, . . . , nr. As applications, we
also give a recursive formula for the Jones polynomial of a 3-periodic link
L(3) with rational quotient L = C(2, n1,−2, n2, . . . , nr, (−1)r2) for any
nonzero integers n1, n2, . . . , nr and give a formula for the span of the
Jones polynomial of L(3) in terms of n1, n2, . . . , nr with ni 6= ±1 for all
i = 1, 2, . . . , r.

1. Introduction

The Jones polynomial of an oriented link in S3 was first introduced in [4].
Kauffman [8] and Murasugi [15] have used the Jones polynomial in verifying
Tait conjecture which states that a reduced alternating diagram has minimal
crossing number. Let D be a connected, prime diagram of an oriented link L.
Then the span of the Jones polynomial of L is less than or equal to the number
of crossings of D and the equality holds if and only if D is reduced alternating
[8, 15, 23].

In 1956, a characterization of 2-bridge knots and links was introduced by
Schubert [21]. In [1], Conway introduced another presentation, now called
Conway normal form, of 2-bridge knots and links. Several people have studied
the Jones polynomials of 2-bridge knots and links [5, 6, 13, 14, 18, 19, 22].
In 1987, Lichorish and Millett [13] gave an algorithm to calculate the Homfly
polynomials of 2-bridge knots and links with matrix manipulations. In 2002,
Nakabo [19] also presented an explicit formula of the Homfly polynomials of 2-
bridge knots and links. Lu and Zhong [14] computed the Kauffman polynomials
of 2-bridge knots and links using the Kauffman skein theory and linear algebra
techniques. Note that the Jones polynomial can be obtained from the Homfly
and Kauffman polynomials by substituting variables.
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On the other hand, Hilden, Lozano, and Montesinos-Amilibia [2] introduced
a special kind of Conway normal form of a 2-bridge link with two components
and studied the excellent component of the character variety of periodic knots
in S3 with rational quotients. In [16], Murasugi described several relationships
between the Jones polynomials of a periodic link and its factor link. It is
remarkable that the set of periodic links with rational quotients is a special
family of periodic links which contains all 2-bridge knots and links, all torus
knots and links and some pretzel knots and links, etc. It is known that every
2-bridge knot or link is a 2-periodic link with rational quotient and every 2-
periodic link with rational quotient is a 2-bridge knot or link [3]. The second
and third authors [10] re-examined Hilden, Lozano, and Montesinos-Amilibia’s
presentation to study the Alexander polynomials of 2-bridge links with Conway
normal form C(2, n1,−2, n2, . . . , nr, (−1)r2) and q-periodic links in S3 with
rational quotients C(2, n1,−2, n2, . . . , nr, (−1)r2) in terms of n1, n2, . . . , nr and
its period q. Thereafter, some properties for the family of periodic links with
rational quotients are studied [3, 9, 10, 11, 12].

In this paper, we first give a recursive formula for the Jones polynomial of
a 2-periodic link with rational quotient, which is actually a recursive formula
for the Jones polynomial of a 2-bridge knot or link. Generalizing this formula,
we also obtain a recursive formula for the Jones polynomial of a 3-periodic link
with rational quotient and a formula for the span of the Jones polynomial of
this kind of 3-periodic link.

This paper is organized as follows. In Section 2, we review presentations
of 2-bridge knots and links and periodic links with rational quotients. Sec-
tion 3 contains the definition of bracket polynomial and formulas for periodic
links with rational quotients. In Section 4, for arbitrary given nonzero in-
tegers n1, n2, . . . , nr, we give a recursive formula for the Jones polynomial
of a 2-bridge knot or link with Conway normal form C(−2n1, 2n2, −2n3,
. . . , (−1)r2nr) in terms of n1, n2, . . . , nr. In Section 5, we give a recursive
formula for the Jones polynomial of a 3-periodic link L(3) with rational quo-
tient L = C(2, n1,−2, n2, . . . , nr, (−1)r2) for arbitrary given nonzero integers
n1, n2, . . . , nr and give a formula for the span of the Jones polynomial of L(3)

in terms of n1, n2, . . . , nr with ni 6= ±1 for all i = 1, 2, . . . , r. The formula for
the span gives a lower bound for the minimal crossing number of the 3-periodic
link L(3).

2. Periodic links with rational quotients

To each pair (α, β) of two co-prime integers subject to the condition that
β is odd and 0 < |β| < α, Schubert [21] associated an oriented diagram on
the 2-sphere S2 of an oriented 2-bridge knot(α odd) or link(α even) L in S3,
now called the Schubert normal form of L and denoted by S(α, β), and showed
that any (oriented) 2-bridge knots and links in S3 can be represented in this
way. Two such pairs of integers (α, β) and (α′, β′) define an equivalent oriented
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(resp. unoriented) knot or link if and only if

α = α′ and β±1 ≡ β′ mod 2α (resp. mod α),

where β−1 denotes the integer with the properties 0 < β−1 < 2α and ββ−1 ≡
1 mod 2α.

Let [a1, a2, . . . , an] denote a continued fraction expansion of α/β:

[a1, a2, . . . , an] ≡ a1 +
1

a2 + 1

. . . + 1
an

=
α

β
.

Then L = S(α, β) has also a diagram C(a1, a2, . . . , an), called Conway normal
form of L, as shown in Figure 1, depending on whether n is even or odd [1]. The
integral tangles in Figure 1, which are rectangles labeled ai, are the 2-braids
with |ai| crossings as shown in Figure 2. It is well known that L = S(α, β) ad-
mits a diagram C(2b1, 2b2, . . . , 2bm), which is equivalent to C(a1, a2, . . . , an) [7].

n=2k

· · ·
· · ·a1

−a2

a3 a2k−1

−a2k

n=2k+1

· · ·
· · ·a1

−a2

a3 a2k−1

−a2k

a2k+1

Figure 1
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?? ??
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?
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ÄÄ
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??
?
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ÄÄ · · · ??
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?

ÄÄ

ÄÄ

ai<0 ai>0

Figure 2

It is known [2, 10] that the 2-bridge link L = S(α, β)(α even) can also be
represented by Conway diagram of the form C(2, n1,−2, n2, . . . , nr, (−1)r2) as
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shown in Figure 3. We choose an orientation of the 2-bridge link C(2, n1,−2, n2,
. . . , nr, (−1)r2) as shown in Figure 3. Then it is easy to see that the diagram
shown in Figure 3 can be deformed to the diagrams in Figure 4 by using
Reidemeister moves. Throughout this paper, an oriented 2-bridge link L in
S3 represented by the Conway normal form C(2, n1,−2, n2, . . . , nr, (−1)r2) is
denoted by L =

−→
C [[n1, n2, . . . , nr]].

n1

n2

nr

...

2

−2

2

±2

ni =

??
??

?
ÄÄ

ÄÄ

??
??

?
ÄÄ

ÄÄ

??
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?
ÄÄ

ÄÄ

...

ni>0

,

ÄÄ
ÄÄ

Ä??
??

ÄÄ
ÄÄ

Ä??
??

ÄÄ
ÄÄ

Ä??
??

...

ni<0

oo

//

Figure 3
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...

//
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Figure 4
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A link L in S3 is called a p-periodic link (p ≥ 2 an integer) if there exists an
orientation preserving auto-homeomorphism h of S3 such that h(L) = L, h is
of order p and the set Fix(h) of fixed points of h is a circle disjoint from L. In
this case, the link L/〈h〉 ∪ Fix(h) in the orbit space S3/〈h〉 ∼= S3 is called the
quotient link of L. Let K be an oriented link in S3 and U an oriented trivial
knot with K ∩ U = ∅. For any integer p ≥ 2, let φp

U : Σ3 → S3 be a p-fold
branched cyclic covering branched along U . Then Σ3 is homeomorphic to the
3-sphere S3, and (φp

U )−1(K) is a p-periodic link in Σ3 with L = K ∪ U as its
quotient link. We give an orientation to (φp

U )−1(K) induced by the orientation
of K. Note that any periodic knot or link in S3 arises in this manner.

Definition ([10]). A link L̃ in S3 is called a p-periodic link with rational quo-
tient if it is a p-periodic link whose quotient link is a 2-bridge link, or equiva-
lently, if there exists a 2-bridge link L = U1∪U2 in S3 such that L̃ is equivalent
to the preimage (φp

U2
)−1(U1) of the component U1 of L by a p-fold cyclic cov-

ering φp
U2

: Σ3 → S3 branched along the component U2 of L.

Note that each component U1 and U2 of L is a trivial knot and they can
be interchanged each other by an orientation preserving homeomorphism of S3

[17]. This implies that (φp
U2

)−1(U1) is equivalent to (φp
U1

)−1(U2). Now let L =
−→
C [[n1, n2, . . . , nr]] = U1 ∪ U2 be an oriented 2-bridge link as shown Figure 4.
Then the diagram D(p) shown in Figure 5 is a canonical oriented p-periodic
diagram of the oriented p-periodic link (φp

U2
)−1(U1) with rational quotient L =

−→
C [[n1, n2, . . . , nr]]. In what follows, we shall denote the oriented p-periodic link
(φp

U2
)−1(U1) by L(p) or

−→
C [[n1, n2, . . . , nr]](p) for our convenience. Then any p-

periodic link with rational quotient can be represented by
−→
C [[n1, n2, . . . , nr]](p)

for some nonzero integers n1, n2, . . . , nr [3, 10].

nr

n3

n2

n1

. . .
nr

n3

n2

n1

. . .
nr

n3

n2

n1

. . .

...
...

· · ·

· · ·
· · ·
· · ·//// //

Figure 5. The canonical p-periodic diagram D(p) of L(p)
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3. Bracket polynomial of periodic links

The bracket polynomial of an unoriented link diagram D, denoted by 〈D〉,
is a Laurent polynomial in a single variable A defined by the following three
axioms:

1. If denotes the standard diagram of the unknot, then

(1) 〈 〉 = 1.

2. If δ = −A−2 − A2 and D t denotes the diagram D together with
the standard diagram of the unknot, disjoint from D, then

(2) 〈D t 〉 = δ〈D〉.
3. Suppose that D+, D0 and D∞ are the diagrams that are exactly the

same except at a neighborhood of one crossing point in which the dia-
grams differ as shown in Figure 6. Then

(3) 〈D+〉 = A〈D∞〉+ A−1〈D0〉.

??
??

??
??

?
ÄÄ

ÄÄ

ÄÄ
ÄÄ

D+

ÄÄÄÄÄÄÄÄÄ
????

????

D− D0 D∞

Figure 6

From (3), we also obtain the equation

(4) 〈D−〉 = A〈D0〉+ A−1〈D∞〉.
It is easy to see that 〈D〉 is an invariant under Reidemeister moves II and

III, but not an invariant under Reidemeister move I. If ϕ+, ϕ− and ϕ0 are the
diagrams that are exactly the same except at a neighborhood of one crossing
point in which the diagrams differ as shown in Figure 7, then we have

(5) 〈ϕ+〉 = (−A)3〈ϕ0〉, 〈ϕ−〉 = (−A)−3〈ϕ0〉.

¶¶¶¶

++
+

ϕ+

++
++

¶¶¶

ϕ− ϕ0

Figure 7
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For a link L with its diagram D, the Jones polynomial VL(t) of L is defined
as

VL(t) = (−A)−3w(D)〈D〉
by setting A−4 = t [8].

Lemma 3.1. For each integer n, let T (n) be a diagram with n-half twists and
fixed outside as described in Figure 8. Then for any integer n ≥ 1, we have

〈T (n)〉 = A−n〈T (0)〉+ A−n+2
n−1∑

i=0

(−A4)i〈T (∞)〉(6)

and

〈T (−n)〉 = An〈T (0)〉+ An−2
n−1∑

i=0

(−A−4)i〈T (∞)〉.(7)

zz
zz

z
DD

DD

zz
zz

z
DD

DD

T (−2)

· · ·
¯̄
¯̄
¯̄
¯

222

222

T (−1) T (0)

22
22

22
2

¯̄
¯

¯̄
¯

T (1)

DD
DD

D
zz

zz

DD
DD

D
zz

zz

T (2)

· · ·

T (∞)

Figure 8

Proof. First we will prove that the equation (6) holds. If n = 1, then 〈T (1)〉 =
A−1〈T (0)〉+ A〈T (∞)〉 by (3). For a positive integer n > 1, we assume that

〈T (n)〉 = A−n〈T (0)〉+ A−n+2
n−1∑

i=0

(−A4)i〈T (∞)〉.

Then it follows that

〈T (n + 1)〉 = A−1〈T (n)〉+ A(−A)3n〈T (∞)〉

= A−1

(
A−n〈T (0)〉+ A−n+2

n−1∑

i=0

(−A4)i〈T (∞)〉
)

+ A−(n+1)+2(−A4)n〈T (∞)〉

= A−(n+1)〈T (0)〉+ A−(n+1)+2
n∑

i=0

(−A4)i〈T (∞)〉.

By a similar argument, we obtain the equation (7). ¤
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For any nonzero integer n, we define Laurent polynomials αn and βn by

αn = A−n, βn =





A−n+2
n−1∑

i=0

(−A4)i if n ≥ 1,

A−n−2
−n−1∑

i=0

(−A−4)i if n ≤ −1.

(8)

Then we have easily:

Lemma 3.2. For given nonzero integers n and p, we have that

βnδ + pαn = A−n((−A4)n + (p− 1)).

For any nonzero integers n1, n2, . . . , nr (r ≥ 1) and a positive integer p ≥ 2,
let L(p) be the p-periodic link in S3 with rational quotient L =

−→
C [[n1, n2, . . .,

nr]]. We consider the p-periodic diagram D(p) of L(p) as shown in Figure 9. In
Figure 9, each Ti,j denotes a 2-tangle with ni-half twists as in Figure 3. If ni is
positive (respectively, negative), each crossing of Ti,j is positive (respectively,
negative). Since the writhe, denoted by w(D(p)), of D(p) is the sum of crossing
signs of crossings in D(p), we get

w(D(p)) = p

r∑

i=1

ni.

T1,1

T2,1

T3,1

Tr,1

. . .

T1,2

T2,2

T3,2

Tr,2

. . .

T1,p

T2,p

T3,p

Tr,p

. . .

· · ·
· · ·
· · ·

· · ·

...
...

// // //

oo

Figure 9

Put Ti = {Ti,1, Ti,2, . . . , Ti,p} for each i = 1, 2, . . . , r. We call a function
s : Ti → {0,∞}, where 0 denotes T (0) and ∞ denotes T (∞) a weight function
of Ti. For each i = 1, 2, . . . , r, let Si denote the set of all weight functions of Ti.
For a weight function s ∈ Sr, let D(p)(s) be the diagram obtained from D(p)

by replacing each tangle Tr,k in Tr by a s(Tr,k)-tangle and we denote by φ(s)
the number of the tangles in s−1(0). By applying Lemma 3.1 to each tangle
Tr,k in Tr, we have:
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Proposition 3.3. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a
positive integer p ≥ 2, let L(p) be the p-periodic link with rational quotient
L =

−→
C [[n1, n2, . . . , nr]] and D(p) its p-periodic diagram as shown in Figure 9.

Then
〈D(p)〉 =

∑

s∈Sr

αφ(s)
nr

βp−φ(s)
nr

〈D(p)(s)〉.

For an r-tuple (s1, s2, . . . , sr) of weight functions with si ∈ Si(i = 1, 2, . . . , r),
let D(p)(s1, . . . , sr) be the diagram obtained from D(P ) by replacing each tangle
Ti,j with the si(Ti,j)-tangle and we denote by φ(sk) the number of tangles in
s−1

k (0) for each k = 1, 2, . . . , r. By applying Lemma 3.1 to each tangle Ti,j in
D(p), we also have:

Proposition 3.4. For given nonzero integers n1, n2, . . . , nr (r ≥ 1) and a
positive integer p ≥ 2, let L(p) be the p-periodic link with rational quotient
L =

−→
C [[n1, n2, . . . , nr]] and D(p) its p-periodic diagram as shown in Figure 9.

Then

〈D(p)〉 =
∑

(s1,...,sr)∈S1×···×Sr

(
r∏

k=1

αφ(sk)
nk

βp−φ(sk)
nk

)
δ|D

(p)(s1,...,sr)|−1,

where δ = −A2 − A−2 and |D(p)(s1, . . . , sr)| is the number of disjoint simple
closed curves in D(p)(s1, . . . , sr).

Remark 3.5. Each diagram D(p)(s1, . . . , sr) is a disjoint union of simple closed
curves. If we can find a formula for the number of disjoint simple closed curves
in each D(p)(s1, . . . , sr) in terms of n1, n2, . . . , nr and p, then the Laurent poly-
nomial 〈D(p)〉 can be expressed by means of the integers n1, n2, . . . , nr and p.
However, it looks very difficult to make such a formula. The authors know of
none.

4. Recursive formula for the Jones polynomial of 2-bridge links

It is well known that any 2-bridge knot or link admits a diagram with Con-
way normal form C(2a1, 2a2, . . . , 2ar) for some integers a1, a2, . . . , ar [7]. In [3],
Jang, the second and third authors proved that the 2-periodic link L(2) with
rational quotient L =

−→
C [[n1, n2, . . . , nk]] is a 2-bridge knot or link with Con-

way normal form C(−2n1, 2n2,−2n3, . . . , (−1)r2nr). In this section we give a
recursive formula for the Jones polynomial of a 2-periodic link with rational
quotient and give a formula for the span of the Jones polynomial. Consequently,
we get a recursive formula for the Jones polynomial of 2-bridge knot or link
with Conway normal form C(2a1, 2a2, . . . , 2ar) in terms of a1, a2, . . . , ar.

Lemma 4.1. Let n1, n2, . . . , nr be given nonzero integers. For each k =
1, 2, . . . , r, let D

(2)
k be the canonical 2-periodic diagram of the 2-periodic link



928 EUNJU LEE, SANG YOUL LEE, AND MYOUNGSOO SEO

with rational quotient Lk =
−→
C [[n1, n2, . . . , nk]]. Let D

(2)
0 denote the standard

diagram of the unknot. Then we have the following recursive formula:

〈D(2)
0 〉 = 1,

〈D(2)
1 〉 = β2

n1
δ + 2αn1βn1 + α2

n1
δ,(9)

〈D(2)
k 〉 = (β2

nk
δ + 2αnk

βnk
)〈D(2)

k−1〉+ α2
nk

A6nk−1〈D(2)
k−2〉.

Proof. For a weight function s ∈ Sk, let D
(2)
k (s(Tk,1), s(Tk,2)) be the diagram

obtained from D
(2)
k by replacing each tangle Tk,i by an s(Tk,i)-tangle (i = 1, 2).

If k = 1, then D
(2)
1 (0, 0), D

(2)
1 (0,∞), D

(2)
1 (∞, 0) and D

(2)
1 (∞,∞) consist

of simple closed curves without crossings. We observe that D
(2)
1 (0, 0) and

D
(2)
1 (∞,∞) have two components and D

(2)
1 (0,∞) and D

(2)
1 (∞, 0) have one

component. By Proposition 3.4, we have

〈D(2)
1 〉 = β2

n1
δ + 2αn1βn1 + α2

n1
δ.

Now we assume that the recursive formula (9) holds for n1, n2, . . . , nk−1 with
k ≥ 2. Then D

(2)
k (0, 0), D

(2)
k (0,∞), D

(2)
k (∞, 0) and D

(2)
k (∞,∞) are isotopic

to the diagrams as shown in Figure 10. Thus D
(2)
k (0,∞) and D

(2)
k (∞, 0) are

nk−1 nk−1

nk−2 nk−2

...
...

D
(2)
k (0,0)

nk−1 nk−1

nk−2 nk−2

...
...

D
(2)
k (0,∞)

nk−1 nk−1

nk−2 nk−2

...
...

D
(2)
k (∞,0)

nk−1 nk−1

nk−2 nk−2

...
...

D
(2)
k (∞,∞)

Figure 10

isotopic to the diagram D
(2)
k−1, and D

(2)
k (∞,∞) is isotopic to the diagram D

(2)
k−1t

. Moreover D
(2)
k (0, 0) is obtained from D

(2)
k−2 by applying the Reidemeister

move I. By (2), (5) and Proposition 3.3, we have

〈D(2)
k 〉 = β2

k〈D(2)
k (∞,∞)〉+ βkαk〈D(2)

k (∞, 0)〉
+ αkβk〈D(2)

k (0,∞)〉+ α2
k〈D(2)

k (0, 0)〉
= (β2

kδ + 2αkβk)〈D(2)
k−1〉+ α2

kA6nk−1〈D(2)
k−2〉.

This completes the proof. ¤
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For any nonzero integer n, let An(t) be a Laurent polynomial in Z[t±
1
2 ]

defined by

(10) An(t) =





t−
1
2

n−1∑

i=0

(−t)−i if n ≥ 1,

t
1
2

−n−1∑

i=0

(−t)i if n ≤ −1.

We note that βn|
A=t−

1
4

= t
n
4An(t).

Theorem 4.2. Let n1, n2, . . . , nr be given nonzero integers. For each k =
1, 2, . . . , r, let L

(2)
k be the 2-periodic link with rational quotient Lk =

−→
C [[n1, n2,

. . . , nk]] and let L
(2)
0 the trivial knot. Let Vk(t) be the Jones polynomial of L

(2)
k

for each k = 0, 1, 2, . . . , r. Then we have the following recursive formula:

V0(t) = 1,(11)

V1(t) = t2n1

(
A2n1(t)− t

1
2 − t−

1
2

)
,(12)

Vk(t) = t2nkA2nk
(t)Vk−1(t) + t2nkVk−2(t).(13)

Proof. For each k = 1, 2, . . . , r, let D
(2)
k be the canonical 2-periodic diagram of

the 2-periodic link L
(2)
k . Then

Vk(t) = (−A)−3w(D
(2)
k ) 〈D(2)

k 〉
∣∣∣
A=t−

1
4

.

For each k = 1, 2, . . . , r, put fk(A) = (−A)−3w(D
(2)
k )〈D(2)

k 〉. Then Vk(t) =
fk(A)|

A=t−
1
4
. We note that w(D(2)

k ) = 2
∑k

i=1 ni and, by Lemma 3.2, βniδ +
2αni = A−ni((−A4)ni + 1).

Since L
(2)
0 is the trivial knot, V0(t) = 1. If n1 ≥ 1, then

f1(A) = (−A)−6n1
(
βn1(βn1δ + 2αn1) + α2

n1
δ
)

= A−6n1

(
A−2n1+2((−A4)n1 + 1)

n1−1∑

i=0

(−A4)i + A−2n1(−A2 −A−2)

)

= A−8n1

(
A2

2n1−1∑

i=0

(−A4)i + (−A2 −A−2)

)

and hence

V1(t) = t2n1

(
t−

1
2

2n1−1∑

i=0

(−t)−i + (−t−
1
2 − t

1
2 )

)
= t2n1

(
A2n1(t)− t

1
2 − t−

1
2

)
.
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If n1 ≤ −1, then f1(A) = A−8n1

(
A−2

−2n1−1∑
i=0

(−A−4)i + (−A2 −A−2)
)

and

hence

V1(t) = t2n1

(
t

1
2

−2n1−1∑

i=0

(−t)i + (−t−
1
2 − t

1
2 )

)
= t2n1

(
A2n1(t)− t

1
2 − t−

1
2

)
.

For k ≥ 2, from Lemma 4.1, we obtain

fk(A) = (−A)−6nk(β2
nk

δ + 2αnk
βnk

)fk−1(A) + (−A)−6nkα2
nk

fk−2(A).

Immediately we have (−A)−6nkα2
nk
|
A=t−

1
4

= t2nk . If nk ≥ 1, then it follows
that

(−A)−6nk(β2
nk

δ + 2αnk
βnk

) = A−8nk+2
2nk−1∑

i=0

(−A4)i

and hence

(−A)−6nk(β2
nk

δ + 2αnk
βnk

)|
A=t−

1
4

= t2nkA2nk
(t).

If nk ≤ −1, then

(−A)−6nk(β2
nk

δ + 2αnk
βnk

) = A−8nk−2
−2nk−1∑

i=0

(−A−4)i

and hence

(−A)−6nk(β2
nk

δ + 2αnk
βnk

)|
A=t−

1
4

= t2nkA2nk
(t).

Therefore we have

Vk(t) = fk(A)|
A=t−

1
4

= A−6nk(β2
nk

δ + 2αnk
βnk

)|
A=t−

1
4
Vk−1(t) + A−6nkα2

nk
|
A=t−

1
4
Vk−2(t)

= t2nkA2nk
(t)Vk−1(t) + t2nkVk−2(t).

This completes the proof. ¤

Example 4.3. Let L be the 2-bridge knot with Conway normal form C(−2,
−4). It is the mirror image of the knot 52 in Rolfsen’s table [20]. By the
discussion in the beginning of this section, L is the 2-periodic knot with rational
quotient

−→
C [[1, 2]]. Let n1 = 1 and n2 = 2. Then we have thatA2(t) = t−

1
2−t−

3
2

andA4(t) = t−
1
2−t−

3
2 +t−

5
2−t−

7
2 . From Theorem 4.2, it follows that V0(t) = 1,

V1(t) = −t
1
2 − t

5
2 and V2(t) = −t6 + t5 − t4 + 2t3 − t2 + t. Hence the Jones

polynomial of L is

VL(t) = −t6 + t5 − t4 + 2t3 − t2 + t.

For the Jones polynomial VL(t) of a link L, we denote the maximum (resp.
minimum) degree of VL(t) by max deg VL(t) (resp. min deg VL(t)). We also
denote the span of VL(t) by span VL(t), i.e., span VL(t) = max deg VL(t) −
mindeg VL(t).
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Lemma 4.4. For given nonzero integers n1, n2, . . . , nr, let Vk(t) be the Jones
polynomial of the 2-periodic link L

(2)
k with rational quotient L =

−→
C [[n1, n2,

. . . , nk]] for each k = 1, 2, . . . , r. Put εk = |nk|
nk

(k = 1, 2, . . . , r). For each
k = 1, 2, . . . , r, we have that

(14) max deg Vk(t) =
1− k

2
+

k∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−1∑

j=1

(1− εj)(1 + εj+1)

and

(15) min deg Vk(t) =
k − 1

2
+

k∑

i=1

(ni − |ni|) +
ε1
2
− 1

4

k−1∑

j=1

(1 + εj)(1− εj+1).

Proof. Let n be any nonzero integer. From (10), we have that

(16) max degA2n(t) = −1
2

+ |n| − n, min degA2n(t) =
1
2
− |n| − n.

We will use the recursive formula in Theorem 4.2 and induction on k.
If n1 ≥ 1, then max degA2n1(t) = − 1

2 and hence max deg V1(t) = 2n1 + 1
2 .

If n1 ≤ −1, then max degA2n1(t) = − 1
2 − 2n1 and hence maxdeg V1(t) =

2n1 − 1
2 − 2n1 = − 1

2 . Therefore we have

maxdeg V1(t) = (n1 + |n1|) +
ε1
2

.

We assume that the formula (14) holds for k.

Case (i) : If nk+1 ≤ −1 or nk ≥ 1, then

maxdegA2nk+1(t)Vk(t)

= max degA2nk+1(t) + max deg Vk(t)

= − 1
2

+ |nk+1| − nk+1

+
1− k

2
+

k∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−1∑

j=1

(1− εj)(1 + εj+1)

≥ 2− k

2
+

k−1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−2∑

j=1

(1− εj)(1 + εj+1)

− 1 + |nk+1| − nk+1 + (nk + |nk|)

and

maxdeg Vk−1(t) =
2− k

2
+

k−1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−2∑

j=1

(1− εj)(1 + εj+1).
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Since −1 + |nk+1| − nk+1 + (nk + |nk|) ≥ 1,

max degA2nk+1(t)Vk(t) > maxdeg Vk−1(t).

Thus by (13), we have that

max deg Vk+1(t)

= 2nk+1 + maxdegA2nk+1(t)Vk(t)

= 2nk+1 − 1
2

+ |nk+1| − nk+1

+
1− k

2
+

k∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−1∑

j=1

(1− εj)(1 + εj+1)

=
1− (k + 1)

2
+

k+1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k∑

j=1

(1− εj)(1 + εj+1).

Case (ii) : If nk+1 ≥ 1 and nk ≤ −1, then

maxdegA2nk+1(t)Vk(t)

= maxdegA2nk+1(t) + maxdeg Vk(t)

= − 1
2

+
1− k

2
+

k−1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−2∑

j=1

(1− εj)(1 + εj+1)

and

maxdeg Vk−1(t) =
2− k

2
+

k−1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−2∑

j=1

(1− εj)(1 + εj+1).

Hence maxdegA2nk+1(t)Vk(t) + 1 = max deg Vk−1(t). Thus we have

maxdeg Vk+1(t)

= 2nk+1 + max deg Vk−1(t)

= 2nk+1 +
2− k

2
+

k−1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k−2∑

j=1

(1− εj)(1 + εj+1)

=
1− (k + 1)

2
+

k+1∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

k∑

j=1

(1− εj)(1 + εj+1).

By a similar argument, we also have the formula (15). ¤

For given nonzero integers n1, n2, . . . , nr, we define an integer κ(n1, n2,
. . . , nr) (or briefly κ(ni; r)) as the number of elements in the set{(ni, ni+1) |
nini+1 > 0, 1 ≤ i ≤ r− 1}. For example, κ(2, 3, 2,−1) = 2, κ(1, 2, 3, 4) = 3 and
κ(−1, 1,−2, 4) = 0. We note that 0 ≤ κ(ni; r) ≤ r − 1.
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Theorem 4.5. For given nonzero integers n1, n2, . . . , nr, let L(2) be the 2-
periodic link with rational quotient L =

−→
C [[n1, n2, . . . , nr]]. Then the span of

the Jones polynomial VL(2)(t) of L(2) is given by

span VL(2)(t) = 2
r∑

i=1

|ni| − κ(ni; r).

Proof. From Lemma 4.4, we have

span VL(2)(t) = max deg VL(2)(t)−mindeg VL(2)(t)

=
1− r

2
+

r∑

i=1

(ni + |ni|) +
ε1
2

+
1
4

r−1∑

j=1

(1− εj)(1 + εj+1)

− r − 1
2

−
r∑

i=1

(ni − |ni|)− ε1
2

+
1
4

r−1∑

j=1

(1 + εj)(1− εj+1)

= (1− r) + 2
r∑

i=1

|ni|+ 1
4

r−1∑

j=1

[(1− εj)(1 + εj+1) + (1 + εj)(1− εj+1)]

= 2
r∑

i=1

|ni| −


(r − 1)−

r−1∑

j=1

1− εjεj+1

2



 .

Because (1− εjεj+1)/2 is 1 if nj and nj+1 have different signs and 0 otherwise,∑r−1
j=1(1 − εjεj+1)/2 counts the number of pairs (nj , nj+1) with njnj+1 < 0.

Therefore,

κ(ni; r) = (r − 1)−
r−1∑

j=1

1− εjεj+1

2
,

hence we have

span VL(2)(t) = 2
r∑

i=1

|ni| − κ(ni; r).

This completes the proof. ¤
Corollary 4.6. For given nonzero integers a1, a2, . . . , ar, let L be the 2-bridge
knot or link with Conway normal form C(2a1, 2a2, . . . , 2ar). Then the crossing
number of L is given by

(17) c(L) = 2
r∑

i=1

|ai| − κ(−a1, a2,−a3, . . . , (−1)rar).

Proof. From [3, Theorem 2.1], L is a 2-periodic link with rational quotient−→
C [[−a1, a2, . . . , (−1)rar]] (for more detail, see Remark 4.7 (2)). By Theo-
rem 4.5, we obtain that

span VL(t) = 2
r∑

i=1

|ai| − κ(−a1, a2,−a3, . . . , (−1)rar).
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Since any 2-bridge link is alternating, the span of its Jones polynomial is equal
to its crossing number. Hence the crossing number of L is given by

c(L) = 2
r∑

i=1

|ai| − κ(−a1, a2,−a3, . . . , (−1)rar).

This completes the proof. ¤

Remark 4.7. (1) It should be noticed that the result in Corollary 4.6 is not new.
It is well known that every 2-bridge knot or link L has the standard Conway
normal form C(b1, b2, . . . , bn) such that all b1, b2, . . . , bn are either positive or
negative and C(b1, b2, . . . , bn) is a reduced alternating diagram for L. Hence
c(L) = |b1| + |b2| + · · · + |bn|. It is also known that L admits a Conway
normal form C(2a1, 2a2, . . . , 2ar) for some nonzero integers a1, a2, . . . , ar [7],
adopted in Corollary 4.6. The authors do not know whether the formula (17)
of Corollary 4.6 can be directly derived from the standard Conway normal form
C(b1, b2, . . . , bn) or not.

(2) Let L be a link of two components and let L1 be the same link as L
but with the opposite orientation on only one component of L. Note that L
and L1 are may be different. But the crossing numbers of L and L1 are the
same. Since every 2-bridge link is invertible, there are at most two oriented
2-bridge links with the same unoriented diagram. Without loss of generality,
in the proof of Corollary 4.6, we can consider that L is a 2-periodic link with
rational quotient

−→
C [[−a1, a2, . . . , (−1)rar]].

5. Recursive formula for the Jones polynomial of 3-periodic links

In this section, we give a recursive formula for the Jones polynomial of a
3-periodic link with rational quotient. We also calculate the span of the Jones
polynomial under certain conditions.

Lemma 5.1. Let n1, n2, . . . , nr be given nonzero integers. For each k =
1, 2, . . . , r, let D

(3)
k be the canonical 3-periodic diagram of the 3-periodic link

with rational quotient Lk =
−→
C [[n1, n2, . . . , nk]]. Let D

(2)
0 denote the standard

diagram of the unknot. Then we have the following recursive formula:

〈D(3)
0 〉 = 1,

γ1 = δ,

〈D(3)
1 〉 = 3αn1β

2
n1

+ (3α2
n1

βn1 + β3
n1

)δ + α3
n1

δ2,(18)

γk = (−A)3nk−1

(
α2

nk−1
γnk−1 + (β2

nk−1
δ + 2αnk−1βnk−1)〈D(3)

k−2〉
)

,

〈D(3)
k 〉 = (β3

nk
δ + 3αnk

β2
nk

)〈D(3)
k−1〉+ 3α2

nk
βnk

γk

+ (−A)9nk−1α3
nk
〈D(3)

k−2〉, k = 2, 3, . . . , r.
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Proof. For a weight function s ∈ Sk, let D
(3)
k (s(Tk,1), s(Tk,2), s(Tk,3)) be the

diagram obtained from D
(3)
k by replacing each tangle Tk,i by a s(Tk,i)-tangle

(i = 1, 2, 3).
If k = 1, then D

(3)
1 (0,∞,∞), D

(3)
1 (∞, 0,∞) and D

(3)
1 (∞,∞, 0) consist

of a simple closed curve. We also observe that D
(3)
1 (0, 0,∞), D

(3)
1 (0,∞, 0),

D
(3)
1 (∞, 0, 0) and D

(3)
1 (∞, ∞, ∞) consist of two simple closed curves, and

D
(3)
1 (0, 0, 0) consists of three simple closed curves. By Proposition 3.4, we

have
〈D(3)

1 〉 = 3αn1β
2
n1

+ (3α2
n1

βn1 + β3
n1

)δ + α3
n1

δ2.

Now we assume that the recursive formula (18) holds for n1, n2, . . . , nk−1

with k ≥ 2. Then D
(3)
k (∞,∞,∞), D(3)

k (0,∞,∞), D(3)
k (∞, 0,∞), D(3)

k (∞,∞, 0),
D

(3)
k (0, 0,∞), D

(3)
k (0,∞, 0), D

(3)
k (∞, 0, 0) and D

(3)
k (0, 0, 0) are isotopic to the

diagrams as shown in Figure 11. Thus D
(3)
k (0,∞,∞), D

(3)
k (∞, 0,∞) and

D
(3)
k (∞,∞, 0) are isotopic to the diagram D

(3)
k−1, and D

(3)
k (∞,∞,∞) is isotopic

to the diagram D
(3)
k−1t . Moreover D

(3)
k (0, 0, 0) is obtained from D

(3)
k−2 by ap-

plying the Reidemeister move I. Since D
(3)
k is a periodic diagram, D

(3)
k (0, 0,∞),

D
(3)
k (0,∞, 0) and D

(3)
k (∞, 0, 0) are isotopic to each other. Let D

(3)
k (∞, 0, 0) and

D
(3)
k (∞, 0, 0) be the diagrams in Figure 12(a) and (b), respectively. They are

obtained from D
(3)
k−1(∞, 0, 0) and D

(3)
k−2 respectively by applying the Reide-

meister move I. For each k = 1, 2, . . . , r, we define a Laurent polynomials γk

by
γk = 〈D(3)

k (∞, 0, 0)〉.
Since D

(3)
1 (∞, 0, 0) is of two components, γ1 = δ. By applying Lemma 3.1 to

Tk−1,1 and Tk−1,2 in D
(3)
k (∞, 0, 0), we get

γk = α2
nk−1

〈D(3)
k (∞, 0, 0)〉+ (β2

nk−1
δ + 2αnk−1βnk−1)〈D(3)

k (∞, 0, 0)〉
= (−A)3nk−1

(
α2

nk−1
γnk−1 + (β2

nk−1
δ + 2αnk−1βnk−1)〈D(3)

k−2〉
)

.

Hence we have

〈D(3)
k 〉 = β3

nk
〈D(3)

k (∞,∞,∞)〉+ β2
nk

αnk
〈D(3)

k (0,∞,∞)〉
+ β2

nk
αnk

〈D(3)
k (∞, 0,∞)〉+ β2

nk
αnk

〈D(3)
k (∞,∞, 0)〉

+ βnk
α2

nk
〈D(3)

k (0, 0,∞)〉+ βnk
α2

nk
〈D(3)

k (0,∞, 0)〉
+ βnk

α2
nk
〈D(3)

k (∞, 0, 0)〉+ α3
nk
〈D(3)

k (0, 0, 0)〉
= (β3

nk
δ + 3αnk

β2
nk

)〈D(3)
k−1〉+ 3α2

nk
βnk

γk + (−A)9nk−1α3
nk
〈D(3)

k−2〉.
This completes the proof. ¤
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nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (0,∞,∞)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,0,∞)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,∞,0)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (0,0,∞)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (0,∞,0)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,0,0)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (0,0,0)

nk−1 nk−1 nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,∞,∞)

Figure 11

For any nonzero integer n, let Bn(t) be a Laurent polynomial in Z[t±
1
2 ]

defined by

(19) Bn(t) =





t−1((−t)−n + 2)

(
n−1∑

i=0

(−t)−i

)2

if n ≥ 1,

t((−t)−n + 2)

(−n−1∑

i=0

(−t)i

)2

if n ≤ −1.

We note that Bn(t) = ((−t)−n + 2)An(t)2.
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nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,0,0)

(a)

nk−1

nk−2 nk−2 nk−2

...
...

...

D
(3)
k (∞,0,0)

(b)

Figure 12

Theorem 5.2. Let n1, n2, . . . , nr be given nonzero integers. Let L
(3)
k be 3-

periodic link with rational quotient Lk =
−→
C [[n1, n2, . . . , nk]] and let L

(3)
0 the

trivial knot. Let Vk(t) be the Jones polynomial of L
(3)
k for each k = 0, 1, 2, . . . , r.

Then we have the following recursive formula:

V0(t) = 1,(20)

V1(t) = (−t)3n1
(Bn1(t) + 3(−t)−n1 + t−1 − 1 + t

)
,(21)

Vk(t) = (−t)3nk (Bnk
(t)Vk−1(t) + 3Ank

(t)λk(t) + Vk−2(t)) ,(22)

where

λ1(t) = −t−
1
2 − t

1
2 ,(23)

λk(t) = t2nk−1
(
λk−1(t) +A2nk−1(t)Vk−2(t)

)
.(24)

Proof. For each k = 1, 2, . . . , r, let D
(3)
k be the canonical 3-periodic diagram of

the 3-periodic link L
(3)
k with rational quotient L =

−→
C [[n1, n2, . . . , nk]]. Then

Vk(t) = (−A)−3w(D
(3)
k ) 〈D(3)

k 〉
∣∣∣
A=t−

1
4

.

For each k = 1, 2, . . . , r, put fk(A) = (−A)−3w(D
(3)
k )〈D(3)

k 〉. Then Vk(t) =
fk(A)|

A=t−
1
4
. We note that w(D(3)

k ) = 3
∑k

i=1 ni and that, by Lemma 3.2,
βniδ + 3αni = A−ni((−A4)ni + 2).

Since L
(3)
0 is the trivial knot, V0(t) = 1. If n1 ≥ 1, then

f1(A) = (−A)−9n1(β2
n1

(3αn1 + βn1δ) + α2
n1

δ(3βn1 + αn1δ))

= (−1)n1A−12n1+4

(
n1−1∑

i=0

(−A4)i

)2

((−A4)n1 + 2)

+ (−1)n1A−12n1+4(−1−A−4)

(
3

n1−1∑

i=0

(−A4)i + (−1−A−4)

)
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and hence

V1(t) = (−1)n1t3n1−1

(
n1−1∑

i=0

(−t)−i

)2

((−t)−n1 + 2)

+ (−1)n1t3n1−1(−1− t)

(
3

n1−1∑

i=0

(−t)−i + (−1− t)

)

= (−t)3n1
(Bn1(t) + 3(−t)−n1 + t−1 − 1 + t

)
.

If n1 ≤ −1, then

f1(A) = (−1)n1A−12n1−4

(−n1−1∑

i=0

(−A−4)i

)2

((−A4)n1 + 2)

+ (−1)n1A−12n1+4(−1−A−4)

(
3A−4

−n1−1∑

i=0

(−A−4)i + (−1−A−4)

)

and hence

V1(t) = (−1)n1t3n1+1

(−n1−1∑

i=0

(−t)i

)2

((−t)−n1 + 2)

+ (−1)n1t3n1−1(−1− t)

(
3t

−n1−1∑

i=0

(−t)i + (−1− t)

)

= (−t)3n1
(Bn1(t) + 3(−t)−n1 + t−1 − 1 + t

)
.

Put λ1(t) = δ |
A=t−

1
4

and λk(t) = (−A)
−9

k−1P
i=1

ni

γk|
A=t−

1
4

for each k =

2, 3, . . . , r. Then λ1(t) = −t−
1
2 − t

1
2 and

λk(t) = (−A)
−9

k−1P
i=1

ni

(−A)3nk−1α2
nk−1

γnk−1 |A=t−
1
4

+ (−A)
−9

k−1P
i=1

ni

(−A)3nk−1βnk−1(βnk−1δ + 2αnk−1)〈D(3)
k−2〉|A=t−

1
4

= A−8nk−1(−A)
−9

k−2P
i=1

ni

γnk−1 |A=t−
1
4

+ A−7nk−1((−A4)nk−1 + 1)βnk−1(−A)
−9

k−2P
i=1

ni〈D(3)
k−2〉|A=t−

1
4

= t2nk−1λk−1(t) + t2nk−1((−t)−nk−1 + 1)Ank−1(t)Vk−2(t)

= t2nk−1λk−1(t) + t2nk−1A2nk−1(t)Vk−2(t).
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For k ≥ 2, by Lemma 5.1, we obtain

fk(A) = (−A)
−9

kP
i=1

ni

(β3
nk

δ + 3αnk
β2

nk
)〈D(3)

k−1〉

+ (−A)
−9

kP
i=1

ni

3α2
nk

βnk
γk + (−A)

−9
kP

i=1
ni

(−A)9nk−1α3
nk
〈D(3)

k−2〉
= (−A)−9nk(β3

nk
δ + 3αnk

β2
nk

)fk−1(A)

+ (−A)
−9

kP
i=1

ni

3α2
nk

βnk
γk + (−A)−9nkα3

nk
fk−2(A).

Note that (−A)−9nkα3
nk
|
A=t−

1
4

= (−1)nkt3nk and (−A)−9nkα2
nk

βnk
|
A=t−

1
4

=
(−1)nk t3nkAnk

(t). If nk ≥ 1, then by Lemma 3.2 we have

(−A)−9nk(β3
nk

δ + 3αnk
β2

nk
) = (−1)nkA−12nk+4((−A4)nk + 2)

(
nk−1∑

i=0

(−A4)i

)2

and hence

(−A)−9nk(β3
nk

δ + 3αnk
β2

nk
)|

A=t−
1
4

= (−1)nkt3nk−1((−t)−nk + 2)

(
nk−1∑

i=0

(−t)−i

)2

= (−t)3nkBnk
(t).

If nk ≤ −1, then by Lemma 3.2 we also have

(−A)−9nk(β3
nk

δ+3αnk
β2

nk
) = (−1)nkA−12nk−4((−A4)nk+2)

(−nk−1∑

i=0

(−A−4)i

)2

and hence

(−A)−9nk(β3
nk

δ + 3αnk
β2

nk
)|

A=t−
1
4

= (−1)nkt3nk+1((−t)−nk + 2)

(−nk−1∑

i=0

(−t)i

)2

= (−t)3nkBnk
(t).

Therefore we have

Vk(t) = fk(A)|
A=t−

1
4

= (−A)−9nk(β3
nk

δ + 3αnk
β2

nk
)fk−1(A)|

A=t−
1
4

+ (−A)
−9

kP
i=1

ni

3α2
nk

βnk
γk|

A=t−
1
4

+ (−A)−9nkα3
nk

fk−2(A)|
A=t−

1
4

= (−t)3nkBnk
(t)Vk−1(t) + 3(−t)3nkAnk

(t)λk(t) + (−t)3nkVk−2(t).

This completes the proof. ¤
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Example 5.3. Let L be the 3-periodic knot with rational quotient
−→
C [[1,−1, 1]].

Then L is the knot 940 in Rolfsen’s table [20]. Let n1 = 1, n2 = −1 and
n3 = 1. Then we have that A1(t) = t−

1
2 , A−1(t) = t

1
2 , A2(t) = t−

1
2 − t−

3
2 ,

A−2(t) = t
1
2 − t

3
2 , B1(t) = 2t−1 − t−2 and B−1(t) = 2t − t2. From The-

orem 5.2, we get that V0(t) = 1, V1(t) = −t4 + t3 + t, λ2 = −t
5
2 − t

1
2 ,

V2(t) = −t3+3t2−2t+4−2t−1+3t−2−t−3, λ3 = t
7
2 −2t

5
2 +t

3
2 −2t

1
2 +t−

1
2 −t−

3
2

and V3(t) = t7 − 4t6 + 8t5 − 11t4 + 13t3 − 13t2 + 11t− 8 + 5t−1 − t−2. Hence
the Jones polynomial of L is

VL(t) = t7 − 4t6 + 8t5 − 11t4 + 13t3 − 13t2 + 11t− 8 + 5t−1 − t−2.

Let n be any nonzero integer. From (19), we note that

(25) max degBn(t) = −1 +
3
2
(|n| − n), min degBn(t) = 1− 3

2
(|n|+ n).

From (10), we also note that

(26) max degAn(t) = −1
2

+
1
2
(|n| − n), min degAn(t) =

1
2
− 1

2
(|n|+ n).

Lemma 5.4. For given nonzero integers n1, n2, . . . , nr, let Vk(t) be the Jones
polynomial of the 3-periodic link L

(3)
k with rational quotient Lk =

−→
C [[n1, n2, . . .,

nk]]. Suppose that ni 6= 1 for all i = 1, 2, . . . , r. In the recursive formula in
Theorem 5.2, we have the following properties for each k = 2, 3, . . . , r :

(1) If nk > 1 and nk−1 ≤ −1, then max degBnk
(t)Vk−1(t) < maxdeg Vk−2(t)

and maxdegAnk
(t)λk(t) < maxdeg Vk−2(t).

(2) If nk ≤ −1 or nk−1 > 1, then max deg Vk−2(t) < maxdegBnk
(t)Vk−1(t)

and maxdegAnk
(t)λk(t) < maxdegBnk

(t)Vk−1(t).

Proof. We will use induction on k. If n1 > 1, then max degBn1(t) = −1. From
(21), we have max deg V1(t) = 3n1 + 1. If n1 ≤ −1, then max degBn1(t) =
−1− 3n1. From (21), we get max deg V1(t) = −1. Therefore we have

maxdeg V1(t) =
3
2
(|n1|+ n1) + ε1.

From (20) and (24), we note that max deg λ2(t) = (|n1| + n1) + 1
2ε1 and

maxdeg V0(t) = 0. If n2 > 1 and n1 ≤ −1, then max degBn2(t)V1(t) = −2 and
maxdegAn2(t)λ2(t) = −1. Hence we have that if n2 > 1 and n1 ≤ −1, then

maxdegBn2(t)V1(t) < maxdeg V0(t)

and
maxdegAn2(t)λ2(t) < maxdeg V0(t).

If n2 ≤ −1, then

max degBn2(t)V1(t) = −1− 3n2 +
3
2
(|n1|+ n1) + ε1

and
maxdegAn2(t)λ2(t) = −1

2
− n2 + (|n1|+ n1) +

1
2
ε1.
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If n1 > 1, then

maxdegBn2(t)V1(t) =
3
2
(|n2| − n2) + 3n1

and

maxdegAn2(t)λ2(t) =
1
2
(|n2| − n2) + 2n1.

Hence we have that if n2 ≤ −1 or n1 > 1, then

maxdeg V0(t) < maxdegBn2(t)V1(t)

and
maxdegAn2(t)λ2(t) < maxdegBn2(t)V1(t).

Now we assume that the statements hold for ≤ k. From now on we will
prove that the statements hold for k + 1.

Case (i) : Suppose that nk+1 > 1 and nk ≤ −1. By the induction hypoth-
esis and (22), we have max deg Vk(t) = 3nk +maxdegBnk

(t)Vk−1(t). Hence we
have

max degBnk+1(t)Vk(t) = −1 + maxdeg Vk(t)

= −1 + 3nk + max degBnk
(t)Vk−1(t)

= −1 + 3nk + (−1− 3nk) + max deg Vk−1(t)

= −2 + maxdeg Vk−1(t)

< maxdeg Vk−1(t).(27)

From (24), it is true that either max deg λk+1(t) ≤ 2nk + max deg λk(t) or
max deg λk+1(t) ≤ 2nk + max degA2nk

(t)Vk−1(t). If max deg λk+1(t) ≤ 2nk +
maxdeg λk(t), then, by the induction hypothesis, we get

max deg λk+1(t) ≤ 2nk + maxdeg λk(t)

< 2nk −maxdegAnk
(t) + max degBnk

(t)Vk−1(t)

= −1
2

+ maxdeg Vk−1(t).

If max deg λk+1(t) ≤ 2nk + max degA2nk
(t)Vk−1(t), then we have

maxdeg λk+1(t) ≤ −1
2

+ max deg Vk−1(t).

Hence we know

maxdegAnk+1(t)λk+1(t) = −1
2

+ max deg λk+1(t)

≤ −1 + max deg Vk−1(t)

< maxdeg Vk−1(t).(28)

By (27) and (28), it follows that the statement (1) holds.
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Case (ii) : Suppose that nk+1 ≤ −1 or nk > 1. By the induction hypothesis
and (22), we have that

max deg Vk(t) ≥ 3nk + max degBnk
(t) + max deg Vk−1(t)

= −1 +
3
2
(|nk|+ nk) + maxdeg Vk−1(t)(29)

and

maxdeg λk(t) ≤ maxdeg Vk(t)− 3nk −max degAnk
(t)

= max deg Vk(t)− 3nk +
1
2
− 1

2
(|nk| − nk).(30)

From (29), we get

max degBnk+1(t)Vk(t)

= − 1 +
3
2
(|nk+1| − nk+1) + maxdeg Vk(t)

≥ − 1 +
3
2
(|nk+1| − nk+1)− 1 +

3
2
(|nk|+ nk) + max deg Vk−1(t)

= − 2 +
3
2
(|nk+1| − nk+1) +

3
2
(|nk|+ nk) + max deg Vk−1(t)

> maxdeg Vk−1(t).(31)

From (24), we know that either

max deg λk+1(t) ≤ 2nk + max deg λk(t)

or

max deg λk+1(t) ≤ 2nk + max degA2nk
(t) + max deg Vk−1(t).

If max deg λk+1(t) ≤ 2nk + max deg λk(t), then from (30), we calculate

max deg λk+1(t) ≤ 2nk + max deg λk(t)

≤ 2nk + max deg Vk(t)− 3nk +
1
2
− 1

2
(|nk| − nk)

= max deg Vk(t) +
1
2
− 1

2
(|nk|+ nk)

= max degBnk+1(t)Vk(t)−maxdegAnk+1(t)

+
(

1− 1
2
(|nk|+ nk)− (|nk+1| − nk+1)

)
.



A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL 943

If max deg λk+1(t) ≤ 2nk +max degA2nk
(t)+max deg Vk−1(t), then from (29),

we have

maxdeg λk+1(t) ≤ 2nk + maxdegA2nk
(t) + max deg Vk−1(t)

≤ 2nk − 1
2

+ (|nk| − nk) + 1− 3
2
(|nk|+ nk) + maxdeg Vk(t)

=
1
2
− 1

2
(|nk|+ nk) + max deg Vk(t)

= maxdegBnk+1(t)Vk(t)−maxdegAnk+1(t)

+
(

1− 1
2
(|nk|+ nk)− (|nk+1| − nk+1)

)
.

Since nk+1 ≤ −1 or nk > 1, we get that 1− 1
2 (|nk|+ nk)− (|nk+1| −nk+1) < 0

and hence

maxdegAnk+1(t)λk+1(t) < maxdegBnk+1(t)Vk(t).(32)

By (31) and (32), it follows that the statement (2) holds. This completes the
proof. ¤

Lemma 5.5. For given nonzero integers n1, n2, . . . , nr, let Vk(t) be the Jones
polynomial of the 3-periodic link L

(3)
k with rational quotient Lk =

−→
C [[n1, n2, . . . ,

nk]]. Suppose that ni 6= −1 for all i = 1, 2, . . . , r. In the recursive formula in
Theorem 5.2, we have the following properties for each k = 2, 3, . . . , r :

(1) If nk < −1 and nk−1 ≥ 1, then mindegBnk
(t)Vk−1(t) > min deg Vk−2(t)

and mindegAnk
(t)λk(t) > min deg Vk−2(t).

(2) If nk ≥ 1 or nk−1 < −1, then mindeg Vk−2(t) > min degBnk
(t)Vk−1(t)

and mindegAnk
(t)λk(t) > min degBnk

(t)Vk−1(t).

Proof. Let mi = −ni for all i = 1, 2, . . . , r and let Ṽk(t) be the Jones polynomial
of the 3-periodic link L̃

(3)
k with rational quotient L̃k =

−→
C [[m1,m2, . . . , mk]].

Let λ̃k(t) be the Laurent polynomial recursively defined by

λ̃1(t) = −t−
1
2 − t

1
2 , λ̃k(t) = t2mk−1(λ̃k−1(t) +A2mk−1(t)Ṽk−2(t)).

By (25) and (26),

max degBmk
(t) = −mindegBnk

(t), maxdegAmk
(t) = −min degAnk

(t).

We observe that L̃
(3)
k is the mirror image of L

(3)
k and hence Ṽk(t) = Vk(t−1).

Therefore

max deg Ṽk(t) = −mindeg Vk(t), maxdeg λ̃k(t) = −min deg λk(t).

By Lemma 5.4,
(1) if mk >1 and mk−1 ≤ −1, then max degBmk

(t)Ṽk−1(t)<maxdeg Ṽk−2(t)
and maxdegAmk

(t)λ̃k(t) < maxdeg Ṽk−2(t),
(2) if mk ≤ −1 or mk−1 > 1, then max deg Ṽk−2(t) < maxdegBmk

(t)Ṽk−1(t)
and maxdegAmk

(t)λ̃k(t) < maxdegBmk
(t)Ṽk−1(t).
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This completes the proof. ¤

Theorem 5.6. For given nonzero integers n1, n2, . . . , nr, let Vk(t) be the Jones
polynomial of the 3-periodic link L

(3)
k with rational quotient Lk =

−→
C [[n1, n2, . . . ,

nk]]. Suppose that ni 6= ±1 for all i = 1, 2, . . . , r. Then

maxdeg Vk(t) = (1− k) +
3
2

k∑

i=1

(ni + |ni|) + ε1 +
1
2

k−1∑

j=1

(1− εj)(1 + εj+1)

and

mindeg Vk(t) = (k − 1) +
3
2

k∑

i=1

(ni − |ni|) + ε1 − 1
2

k−1∑

j=1

(1 + εj)(1− εj+1).

Proof. In the proof of Lemma 5.4, we have

maxdeg V1(t) =
3
2
(|n1|+ n1) + ε1.

If n2 > 1 and n1 < −1, then by (1) in Lemma 5.4 we obtain

maxdeg V2(t) = 3n2 + max deg V0(t) =
3
2
(n2 + |n2|).

If n2 < −1 or n1 > 1, then by (2) in Lemma 5.4 we get

max deg V2(t) = 3n2 + maxdegBn2(t)V1(t)

= 3n2 +
(
−1 +

3
2
(|n2| − n2) +

3
2
(|n1|+ n1) + ε1

)

= −1 +
3
2
(|n2|+ n2) +

3
2
(|n1|+ n1) + ε1.

Therefore we have

max deg V2(t) = −1 +
3
2

2∑

i=1

(ni + |ni|) + ε1 +
1
2
(1− ε1)(1 + ε2).

If nk+1 > 1 and nk < −1, then by (1) in Lemma 5.4 we get

max deg Vk+1(t) = 3nk+1 + maxdeg Vk−1(t)

= 3nk+1 + (2− k) +
3
2

k−1∑

i=1

(ni + |ni|) + ε1

+
1
2

k−2∑

j=1

(1− εj)(1 + εj+1).
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If nk+1 < −1 or nk > 1, then by (2) in Lemma 5.4 we calculate

max deg Vk+1(t) = 3nk+1 + maxdegBnk+1(t)Vk(t)

= −1 +
3
2
(|nk+1|+ nk+1) + (1− k)

+
3
2

k∑

i=1

(ni + |ni|) + ε1 +
1
2

k−1∑

j=1

(1− εj)(1 + εj+1).

Therefore we have

maxdeg Vk+1(t) = −k +
3
2

k+1∑

i=1

(ni + |ni|) + ε1 +
1
2

k∑

j=1

(1− εj)(1 + εj+1).

By a similar argument, we also have

min deg Vk+1(t) = k +
3
2

k+1∑

i=1

(ni − |ni|) + ε1 − 1
2

k∑

j=1

(1 + εj)(1− εj+1).

This completes the proof. ¤

Theorem 5.7. For given nonzero integers n1, n2, . . . , nr, let L(3) be 3-periodic
link with rational quotient L =

−→
C [[n1, n2, . . . , nr]]. If |ni| ≥ 2 for all i =

1, 2, . . . , r, then the span of the Jones polynomial VL(3)(t) of L(3) is given by

span VL(3)(t) = 3
r∑

i=1

|ni| − 2κ(ni; r).

Proof. From Theorem 5.6, we have

span VL(3)(t) = maxdeg Vr(t)−mindeg Vr(t)

= (1− r) +
3
2

r∑

i=1

(ni + |ni|) + ε1 +
1
2

r−1∑

j=1

(1− εj)(1 + εj+1)

− (r − 1)− 3
2

r∑

i=1

(ni − |ni|)− ε1 +
1
2

r−1∑

j=1

(1 + εj)(1− εj+1)

= 3
r∑

i=1

|ni| − 2κ(ni; r)

because

κ(ni; r) = r − 1− 1
4

r−1∑

j=1

[(1− εj)(1 + εj+1) + (1 + εj)(1− εj+1)]

as we have seen in the proof of Theorem 4.5. This completes the proof. ¤



946 EUNJU LEE, SANG YOUL LEE, AND MYOUNGSOO SEO

Acknowledgments. The authors would like to thank the referee for many
valuable comments.

References

[1] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties,
1970 Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329–
358 Pergamon, Oxford.

[2] H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, On the character variety
of periodic knots and links, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3,
477–490.

[3] H. J. Jang, S. Y. Lee, and M. Seo, Casson knot invariants of periodic knots with rational
quotients, J. Knot Theory Ramifications 16 (2007), no. 4, 439–460.

[4] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer.
Math. Soc. (N.S.) 12 (1985), no. 1, 103–111.

[5] T. Kanenobu, Examples on polynomial invariants of knots and links. II, Osaka J. Math.
26 (1989), no. 3, 465–482.

[6] , Jones and Q polynomials for 2-bridge knots and links, Proc. Amer. Math. Soc.
110 (1990), no. 3, 835–841.

[7] T. Kanenobu and Y. Miyazawa, 2-bridge link projections, Kobe J. Math. 9 (1992), no.
2, 171–182.

[8] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3,
395–407.

[9] S. Y. Lee, M.-S. Park, and M. Seo, The Seifert matrices of periodic links with rational
quotients, Kyungpook Math. J. 47 (2007), no. 2, 295–309.

[10] S. Y. Lee and M. Seo, Recurrence formulas for the Alexander polynomials of 2-bridge
links and their covering links, J. Knot Theory Ramifications 15 (2006), no. 2, 179–203.

[11] , Casson knot invariants of periodic knot with rational quotients II, J. Knot
Theory Ramifications 17 (2008), no. 8, 905–923.

[12] , The genus of periodic links with rational quotients, to appear in Bull. Austral.
Math. Soc. (2009).

[13] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology
26 (1987), no. 1, 107–141.

[14] B. Lu and J. K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math.
GT/0606114.

[15] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26
(1987), no. 2, 187–194.

[16] , Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319–329.
[17] , Knot Theory and its Applications, Translated from the 1993 Japanese original
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