# A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS 

Eunju Lee, Sang Youl Lee, and Myoungsoo Seo


#### Abstract

In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form $C\left(-2 n_{1}\right.$, $\left.2 n_{2},-2 n_{3}, \ldots,(-1)^{r} 2 n_{r}\right)$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link $L^{(3)}$ with rational quotient $L=C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ for any nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$ and give a formula for the span of the Jones polynomial of $L^{(3)}$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$ with $n_{i} \neq \pm 1$ for all $i=1,2, \ldots, r$.


## 1. Introduction

The Jones polynomial of an oriented link in $S^{3}$ was first introduced in [4]. Kauffman [8] and Murasugi [15] have used the Jones polynomial in verifying Tait conjecture which states that a reduced alternating diagram has minimal crossing number. Let $D$ be a connected, prime diagram of an oriented link $L$. Then the span of the Jones polynomial of $L$ is less than or equal to the number of crossings of $D$ and the equality holds if and only if $D$ is reduced alternating [ $8,15,23]$.

In 1956, a characterization of 2-bridge knots and links was introduced by Schubert [21]. In [1], Conway introduced another presentation, now called Conway normal form, of 2-bridge knots and links. Several people have studied the Jones polynomials of 2-bridge knots and links $[5,6,13,14,18,19,22]$. In 1987, Lichorish and Millett [13] gave an algorithm to calculate the Homfly polynomials of 2-bridge knots and links with matrix manipulations. In 2002, Nakabo [19] also presented an explicit formula of the Homfly polynomials of 2bridge knots and links. Lu and Zhong [14] computed the Kauffman polynomials of 2-bridge knots and links using the Kauffman skein theory and linear algebra techniques. Note that the Jones polynomial can be obtained from the Homfly and Kauffman polynomials by substituting variables.

[^0]On the other hand, Hilden, Lozano, and Montesinos-Amilibia [2] introduced a special kind of Conway normal form of a 2-bridge link with two components and studied the excellent component of the character variety of periodic knots in $S^{3}$ with rational quotients. In [16], Murasugi described several relationships between the Jones polynomials of a periodic link and its factor link. It is remarkable that the set of periodic links with rational quotients is a special family of periodic links which contains all 2-bridge knots and links, all torus knots and links and some pretzel knots and links, etc. It is known that every 2-bridge knot or link is a 2 -periodic link with rational quotient and every 2 periodic link with rational quotient is a 2-bridge knot or link [3]. The second and third authors [10] re-examined Hilden, Lozano, and Montesinos-Amilibia's presentation to study the Alexander polynomials of 2 -bridge links with Conway normal form $C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ and $q$-periodic links in $S^{3}$ with rational quotients $C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$ and its period $q$. Thereafter, some properties for the family of periodic links with rational quotients are studied $[3,9,10,11,12]$.

In this paper, we first give a recursive formula for the Jones polynomial of a 2-periodic link with rational quotient, which is actually a recursive formula for the Jones polynomial of a 2-bridge knot or link. Generalizing this formula, we also obtain a recursive formula for the Jones polynomial of a 3 -periodic link with rational quotient and a formula for the span of the Jones polynomial of this kind of 3-periodic link.

This paper is organized as follows. In Section 2, we review presentations of 2-bridge knots and links and periodic links with rational quotients. Section 3 contains the definition of bracket polynomial and formulas for periodic links with rational quotients. In Section 4, for arbitrary given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, we give a recursive formula for the Jones polynomial of a 2 -bridge knot or link with Conway normal form $C\left(-2 n_{1}, 2 n_{2},-2 n_{3}\right.$, $\left.\ldots,(-1)^{r} 2 n_{r}\right)$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$. In Section 5, we give a recursive formula for the Jones polynomial of a 3 -periodic link $L^{(3)}$ with rational quotient $L=C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ for arbitrary given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$ and give a formula for the span of the Jones polynomial of $L^{(3)}$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$ with $n_{i} \neq \pm 1$ for all $i=1,2, \ldots, r$. The formula for the span gives a lower bound for the minimal crossing number of the 3 -periodic $\operatorname{link} L^{(3)}$.

## 2. Periodic links with rational quotients

To each pair $(\alpha, \beta)$ of two co-prime integers subject to the condition that $\beta$ is odd and $0<|\beta|<\alpha$, Schubert [21] associated an oriented diagram on the 2 -sphere $S^{2}$ of an oriented 2-bridge $\operatorname{knot}\left(\alpha\right.$ odd) or $\operatorname{link}\left(\alpha\right.$ even) $L$ in $S^{3}$, now called the Schubert normal form of $L$ and denoted by $S(\alpha, \beta)$, and showed that any (oriented) 2-bridge knots and links in $S^{3}$ can be represented in this way. Two such pairs of integers $(\alpha, \beta)$ and $\left(\alpha^{\prime}, \beta^{\prime}\right)$ define an equivalent oriented
(resp. unoriented) knot or link if and only if

$$
\alpha=\alpha^{\prime} \text { and } \beta^{ \pm 1} \equiv \beta^{\prime} \bmod 2 \alpha(\text { resp. } \bmod \alpha)
$$

where $\beta^{-1}$ denotes the integer with the properties $0<\beta^{-1}<2 \alpha$ and $\beta \beta^{-1} \equiv$ $1 \bmod 2 \alpha$.

Let $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ denote a continued fraction expansion of $\alpha / \beta$ :

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right] \equiv a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{n}}}}=\frac{\alpha}{\beta}
$$

Then $L=S(\alpha, \beta)$ has also a diagram $C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, called Conway normal form of $L$, as shown in Figure 1, depending on whether $n$ is even or odd [1]. The integral tangles in Figure 1, which are rectangles labeled $a_{i}$, are the 2-braids with $\left|a_{i}\right|$ crossings as shown in Figure 2. It is well known that $L=S(\alpha, \beta)$ admits a diagram $C\left(2 b_{1}, 2 b_{2}, \ldots, 2 b_{m}\right)$, which is equivalent to $C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ [7].


Figure 1


Figure 2
It is known [2, 10] that the 2-bridge link $L=S(\alpha, \beta)$ ( $\alpha$ even) can also be represented by Conway diagram of the form $C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ as
shown in Figure 3. We choose an orientation of the 2-bridge link $C\left(2, n_{1},-2, n_{2}\right.$, $\left.\ldots, n_{r},(-1)^{r} 2\right)$ as shown in Figure 3. Then it is easy to see that the diagram shown in Figure 3 can be deformed to the diagrams in Figure 4 by using Reidemeister moves. Throughout this paper, an oriented 2 -bridge link $L$ in $S^{3}$ represented by the Conway normal form $C\left(2, n_{1},-2, n_{2}, \ldots, n_{r},(-1)^{r} 2\right)$ is denoted by $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$.


Figure 3


Figure 4

A link $L$ in $S^{3}$ is called a $p$-periodic $\operatorname{link}(p \geq 2$ an integer) if there exists an orientation preserving auto-homeomorphism $h$ of $S^{3}$ such that $h(L)=L, h$ is of order $p$ and the set $\operatorname{Fix}(h)$ of fixed points of $h$ is a circle disjoint from $L$. In this case, the link $L /\langle h\rangle \cup \operatorname{Fix}(h)$ in the orbit space $S^{3} /\langle h\rangle \cong S^{3}$ is called the quotient link of $L$. Let $K$ be an oriented link in $S^{3}$ and $U$ an oriented trivial knot with $K \cap U=\emptyset$. For any integer $p \geq 2$, let $\phi_{U}^{p}: \Sigma^{3} \rightarrow S^{3}$ be a $p$-fold branched cyclic covering branched along $U$. Then $\Sigma^{3}$ is homeomorphic to the 3 -sphere $S^{3}$, and $\left(\phi_{U}^{p}\right)^{-1}(K)$ is a $p$-periodic link in $\Sigma^{3}$ with $L=K \cup U$ as its quotient link. We give an orientation to $\left(\phi_{U}^{p}\right)^{-1}(K)$ induced by the orientation of $K$. Note that any periodic knot or link in $S^{3}$ arises in this manner.

Definition ([10]). A link $\tilde{L}$ in $S^{3}$ is called a p-periodic link with rational quotient if it is a $p$-periodic link whose quotient link is a 2 -bridge link, or equivalently, if there exists a 2-bridge link $L=U_{1} \cup U_{2}$ in $S^{3}$ such that $\tilde{L}$ is equivalent to the preimage $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ of the component $U_{1}$ of $L$ by a $p$-fold cyclic covering $\phi_{U_{2}}^{p}: \Sigma^{3} \rightarrow S^{3}$ branched along the component $U_{2}$ of $L$.

Note that each component $U_{1}$ and $U_{2}$ of $L$ is a trivial knot and they can be interchanged each other by an orientation preserving homeomorphism of $S^{3}$ [17]. This implies that $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ is equivalent to $\left(\phi_{U_{1}}^{p}\right)^{-1}\left(U_{2}\right)$. Now let $L=$ $\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]=U_{1} \cup U_{2}$ be an oriented 2-bridge link as shown Figure 4. Then the diagram $D^{(p)}$ shown in Figure 5 is a canonical oriented $p$-periodic diagram of the oriented $p$-periodic link $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ with rational quotient $L=$ $\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$. In what follows, we shall denote the oriented $p$-periodic link $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ by $L^{(p)}$ or $\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]^{(p)}$ for our convenience. Then any $p-$ periodic link with rational quotient can be represented by $\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]^{(p)}$ for some nonzero integers $n_{1}, n_{2}, \ldots, n_{r}[3,10]$.


Figure 5. The canonical $p$-periodic diagram $D^{(p)}$ of $L^{(p)}$

## 3. Bracket polynomial of periodic links

The bracket polynomial of an unoriented link diagram $D$, denoted by $\langle D\rangle$, is a Laurent polynomial in a single variable $A$ defined by the following three axioms:

1. If $\bigcirc$ denotes the standard diagram of the unknot, then

$$
\begin{equation*}
\langle\bigcirc\rangle=1 \tag{1}
\end{equation*}
$$

2. If $\delta=-A^{-2}-A^{2}$ and $D \sqcup \bigcirc$ denotes the diagram $D$ together with the standard diagram of the unknot, disjoint from $D$, then

$$
\begin{equation*}
\langle D \sqcup \bigcirc\rangle=\delta\langle D\rangle . \tag{2}
\end{equation*}
$$

3. Suppose that $D_{+}, D_{0}$ and $D_{\infty}$ are the diagrams that are exactly the same except at a neighborhood of one crossing point in which the diagrams differ as shown in Figure 6. Then

$$
\begin{equation*}
\left\langle D_{+}\right\rangle=A\left\langle D_{\infty}\right\rangle+A^{-1}\left\langle D_{0}\right\rangle . \tag{3}
\end{equation*}
$$



Figure 6
From (3), we also obtain the equation

$$
\begin{equation*}
\left\langle D_{-}\right\rangle=A\left\langle D_{0}\right\rangle+A^{-1}\left\langle D_{\infty}\right\rangle . \tag{4}
\end{equation*}
$$

It is easy to see that $\langle D\rangle$ is an invariant under Reidemeister moves II and III, but not an invariant under Reidemeister move I. If $\varphi_{+}, \varphi_{-}$and $\varphi_{0}$ are the diagrams that are exactly the same except at a neighborhood of one crossing point in which the diagrams differ as shown in Figure 7, then we have

$$
\begin{equation*}
\left\langle\varphi_{+}\right\rangle=(-A)^{3}\left\langle\varphi_{0}\right\rangle,\left\langle\varphi_{-}\right\rangle=(-A)^{-3}\left\langle\varphi_{0}\right\rangle \tag{5}
\end{equation*}
$$



Figure 7

For a link $L$ with its diagram $D$, the Jones polynomial $V_{L}(t)$ of $L$ is defined as

$$
V_{L}(t)=(-A)^{-3 w(D)}\langle D\rangle
$$

by setting $A^{-4}=t[8]$.
Lemma 3.1. For each integer $n$, let $T(n)$ be a diagram with $n$-half twists and fixed outside as described in Figure 8. Then for any integer $n \geq 1$, we have

$$
\begin{equation*}
\langle T(n)\rangle=A^{-n}\langle T(0)\rangle+A^{-n+2} \sum_{i=0}^{n-1}\left(-A^{4}\right)^{i}\langle T(\infty)\rangle \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle T(-n)\rangle=A^{n}\langle T(0)\rangle+A^{n-2} \sum_{i=0}^{n-1}\left(-A^{-4}\right)^{i}\langle T(\infty)\rangle . \tag{7}
\end{equation*}
$$



Figure 8

Proof. First we will prove that the equation (6) holds. If $n=1$, then $\langle T(1)\rangle=$ $A^{-1}\langle T(0)\rangle+A\langle T(\infty)\rangle$ by (3). For a positive integer $n>1$, we assume that

$$
\langle T(n)\rangle=A^{-n}\langle T(0)\rangle+A^{-n+2} \sum_{i=0}^{n-1}\left(-A^{4}\right)^{i}\langle T(\infty)\rangle .
$$

Then it follows that

$$
\begin{aligned}
\langle T(n+1)\rangle= & A^{-1}\langle T(n)\rangle+A(-A)^{3 n}\langle T(\infty)\rangle \\
= & A^{-1}\left(A^{-n}\langle T(0)\rangle+A^{-n+2} \sum_{i=0}^{n-1}\left(-A^{4}\right)^{i}\langle T(\infty)\rangle\right) \\
& +A^{-(n+1)+2}\left(-A^{4}\right)^{n}\langle T(\infty)\rangle \\
= & A^{-(n+1)}\langle T(0)\rangle+A^{-(n+1)+2} \sum_{i=0}^{n}\left(-A^{4}\right)^{i}\langle T(\infty)\rangle .
\end{aligned}
$$

By a similar argument, we obtain the equation (7).

For any nonzero integer $n$, we define Laurent polynomials $\alpha_{n}$ and $\beta_{n}$ by

$$
\alpha_{n}=A^{-n}, \quad \beta_{n}=\left\{\begin{array}{cl}
A^{-n+2} \sum_{i=0}^{n-1}\left(-A^{4}\right)^{i} & \text { if } n \geq 1  \tag{8}\\
A^{-n-2} \sum_{i=0}^{-n-1}\left(-A^{-4}\right)^{i} & \text { if } n \leq-1
\end{array}\right.
$$

Then we have easily:
Lemma 3.2. For given nonzero integers $n$ and $p$, we have that

$$
\beta_{n} \delta+p \alpha_{n}=A^{-n}\left(\left(-A^{4}\right)^{n}+(p-1)\right) .
$$

For any nonzero integers $n_{1}, n_{2}, \ldots, n_{r}(r \geq 1)$ and a positive integer $p \geq 2$, let $L^{(p)}$ be the $p$-periodic link in $S^{3}$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots\right.\right.$, $\left.n_{r}\right]$ ]. We consider the $p$-periodic diagram $D^{(p)}$ of $L^{(p)}$ as shown in Figure 9. In Figure 9, each $T_{i, j}$ denotes a 2-tangle with $n_{i}$-half twists as in Figure 3. If $n_{i}$ is positive (respectively, negative), each crossing of $T_{i, j}$ is positive (respectively, negative). Since the writhe, denoted by $w\left(D^{(p)}\right)$, of $D^{(p)}$ is the sum of crossing signs of crossings in $D^{(p)}$, we get

$$
w\left(D^{(p)}\right)=p \sum_{i=1}^{r} n_{i}
$$



Figure 9
Put $\mathcal{T}_{i}=\left\{T_{i, 1}, T_{i, 2}, \ldots, T_{i, p}\right\}$ for each $i=1,2, \ldots, r$. We call a function $s: \mathcal{T}_{i} \rightarrow\{0, \infty\}$, where 0 denotes $T(0)$ and $\infty$ denotes $T(\infty)$ a weight function of $\mathcal{T}_{i}$. For each $i=1,2, \ldots, r$, let $\mathcal{S}_{i}$ denote the set of all weight functions of $\mathcal{T}_{i}$. For a weight function $s \in \mathcal{S}_{r}$, let $D^{(p)}(s)$ be the diagram obtained from $D^{(p)}$ by replacing each tangle $T_{r, k}$ in $\mathcal{T}_{r}$ by a $s\left(T_{r, k}\right)$-tangle and we denote by $\phi(s)$ the number of the tangles in $s^{-1}(0)$. By applying Lemma 3.1 to each tangle $T_{r, k}$ in $\mathcal{T}_{r}$, we have:

Proposition 3.3. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}(r \geq 1)$ and a positive integer $p \geq 2$, let $L^{(p)}$ be the p-periodic link with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$ and $D^{(p)}$ its p-periodic diagram as shown in Figure 9. Then

$$
\left\langle D^{(p)}\right\rangle=\sum_{s \in \mathcal{S}_{r}} \alpha_{n_{r}}^{\phi(s)} \beta_{n_{r}}^{p-\phi(s)}\left\langle D^{(p)}(s)\right\rangle
$$

For an $r$-tuple $\left(s_{1}, s_{2}, \ldots, s_{r}\right)$ of weight functions with $s_{i} \in \mathcal{S}_{i}(i=1,2, \ldots, r)$, let $D^{(p)}\left(s_{1}, \ldots, s_{r}\right)$ be the diagram obtained from $D^{(P)}$ by replacing each tangle $T_{i, j}$ with the $s_{i}\left(T_{i, j}\right)$-tangle and we denote by $\phi\left(s_{k}\right)$ the number of tangles in $s_{k}^{-1}(0)$ for each $k=1,2, \ldots, r$. By applying Lemma 3.1 to each tangle $T_{i, j}$ in $D^{(p)}$, we also have:

Proposition 3.4. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}(r \geq 1)$ and $a$ positive integer $p \geq 2$, let $L^{(p)}$ be the p-periodic link with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$ and $D^{(p)}$ its p-periodic diagram as shown in Figure 9. Then

$$
\left\langle D^{(p)}\right\rangle=\sum_{\left(s_{1}, \ldots, s_{r}\right) \in \mathcal{S}_{1} \times \cdots \times \mathcal{S}_{r}}\left(\prod_{k=1}^{r} \alpha_{n_{k}}^{\phi\left(s_{k}\right)} \beta_{n_{k}}^{p-\phi\left(s_{k}\right)}\right) \delta^{\left|D^{(p)}\left(s_{1}, \ldots, s_{r}\right)\right|-1}
$$

where $\delta=-A^{2}-A^{-2}$ and $\left|D^{(p)}\left(s_{1}, \ldots, s_{r}\right)\right|$ is the number of disjoint simple closed curves in $D^{(p)}\left(s_{1}, \ldots, s_{r}\right)$.

Remark 3.5. Each diagram $D^{(p)}\left(s_{1}, \ldots, s_{r}\right)$ is a disjoint union of simple closed curves. If we can find a formula for the number of disjoint simple closed curves in each $D^{(p)}\left(s_{1}, \ldots, s_{r}\right)$ in terms of $n_{1}, n_{2}, \ldots, n_{r}$ and $p$, then the Laurent polynomial $\left\langle D^{(p)}\right\rangle$ can be expressed by means of the integers $n_{1}, n_{2}, \ldots, n_{r}$ and $p$. However, it looks very difficult to make such a formula. The authors know of none.

## 4. Recursive formula for the Jones polynomial of 2-bridge links

It is well known that any 2-bridge knot or link admits a diagram with Conway normal form $C\left(2 a_{1}, 2 a_{2}, \ldots, 2 a_{r}\right)$ for some integers $a_{1}, a_{2}, \ldots, a_{r}$ [7]. In [3], Jang, the second and third authors proved that the 2-periodic link $L^{(2)}$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right]$ is a 2-bridge knot or link with Conway normal form $C\left(-2 n_{1}, 2 n_{2},-2 n_{3}, \ldots,(-1)^{r} 2 n_{r}\right)$. In this section we give a recursive formula for the Jones polynomial of a 2 -periodic link with rational quotient and give a formula for the span of the Jones polynomial. Consequently, we get a recursive formula for the Jones polynomial of 2-bridge knot or link with Conway normal form $C\left(2 a_{1}, 2 a_{2}, \ldots, 2 a_{r}\right)$ in terms of $a_{1}, a_{2}, \ldots, a_{r}$.

Lemma 4.1. Let $n_{1}, n_{2}, \ldots, n_{r}$ be given nonzero integers. For each $k=$ $1,2, \ldots, r$, let $D_{k}^{(2)}$ be the canonical 2-periodic diagram of the 2-periodic link
with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right]$. Let $D_{0}^{(2)}$ denote the standard diagram of the unknot. Then we have the following recursive formula:

$$
\begin{align*}
& \left\langle D_{0}^{(2)}\right\rangle=1 \\
& \left\langle D_{1}^{(2)}\right\rangle=\beta_{n_{1}}^{2} \delta+2 \alpha_{n_{1}} \beta_{n_{1}}+\alpha_{n_{1}}^{2} \delta  \tag{9}\\
& \left\langle D_{k}^{(2)}\right\rangle=\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)\left\langle D_{k-1}^{(2)}\right\rangle+\alpha_{n_{k}}^{2} A^{6 n_{k-1}}\left\langle D_{k-2}^{(2)}\right\rangle
\end{align*}
$$

Proof. For a weight function $s \in \mathcal{S}_{k}$, let $D_{k}^{(2)}\left(s\left(T_{k, 1}\right), s\left(T_{k, 2}\right)\right)$ be the diagram obtained from $D_{k}^{(2)}$ by replacing each tangle $T_{k, i}$ by an $s\left(T_{k, i}\right)$-tangle $(i=1,2)$.

If $k=1$, then $D_{1}^{(2)}(0,0), D_{1}^{(2)}(0, \infty), D_{1}^{(2)}(\infty, 0)$ and $D_{1}^{(2)}(\infty, \infty)$ consist of simple closed curves without crossings. We observe that $D_{1}^{(2)}(0,0)$ and $D_{1}^{(2)}(\infty, \infty)$ have two components and $D_{1}^{(2)}(0, \infty)$ and $D_{1}^{(2)}(\infty, 0)$ have one component. By Proposition 3.4, we have

$$
\left\langle D_{1}^{(2)}\right\rangle=\beta_{n_{1}}^{2} \delta+2 \alpha_{n_{1}} \beta_{n_{1}}+\alpha_{n_{1}}^{2} \delta .
$$

Now we assume that the recursive formula (9) holds for $n_{1}, n_{2}, \ldots, n_{k-1}$ with $k \geq 2$. Then $D_{k}^{(2)}(0,0), D_{k}^{(2)}(0, \infty), D_{k}^{(2)}(\infty, 0)$ and $D_{k}^{(2)}(\infty, \infty)$ are isotopic to the diagrams as shown in Figure 10. Thus $D_{k}^{(2)}(0, \infty)$ and $D_{k}^{(2)}(\infty, 0)$ are


Figure 10
isotopic to the diagram $D_{k-1}^{(2)}$, and $D_{k}^{(2)}(\infty, \infty)$ is isotopic to the diagram $D_{k-1}^{(2)} \sqcup$ O. Moreover $D_{k}^{(2)}(0,0)$ is obtained from $D_{k-2}^{(2)}$ by applying the Reidemeister move I. By (2), (5) and Proposition 3.3, we have

$$
\begin{aligned}
\left\langle D_{k}^{(2)}\right\rangle= & \beta_{k}^{2}\left\langle D_{k}^{(2)}(\infty, \infty)\right\rangle+\beta_{k} \alpha_{k}\left\langle D_{k}^{(2)}(\infty, 0)\right\rangle \\
& +\alpha_{k} \beta_{k}\left\langle D_{k}^{(2)}(0, \infty)\right\rangle+\alpha_{k}^{2}\left\langle D_{k}^{(2)}(0,0)\right\rangle \\
= & \left(\beta_{k}^{2} \delta+2 \alpha_{k} \beta_{k}\right)\left\langle D_{k-1}^{(2)}\right\rangle+\alpha_{k}^{2} A^{6 n_{k-1}}\left\langle D_{k-2}^{(2)}\right\rangle .
\end{aligned}
$$

This completes the proof.

For any nonzero integer $n$, let $\mathcal{A}_{n}(t)$ be a Laurent polynomial in $\mathbb{Z}\left[t^{ \pm \frac{1}{2}}\right]$ defined by

$$
\mathcal{A}_{n}(t)= \begin{cases}t^{-\frac{1}{2}} \sum_{i=0}^{n-1}(-t)^{-i} & \text { if } n \geq 1  \tag{10}\\ t^{\frac{1}{2}} \sum_{i=0}^{-n-1}(-t)^{i} & \text { if } n \leq-1\end{cases}
$$

We note that $\left.\beta_{n}\right|_{A=t^{-\frac{1}{4}}}=t^{\frac{n}{4}} \mathcal{A}_{n}(t)$.
Theorem 4.2. Let $n_{1}, n_{2}, \ldots, n_{r}$ be given nonzero integers. For each $k=$ $1,2, \ldots, r$, let $L_{k}^{(2)}$ be the 2-periodic link with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}\right.\right.$, $\left.\left.\ldots, n_{k}\right]\right]$ and let $L_{0}^{(2)}$ the trivial knot. Let $V_{k}(t)$ be the Jones polynomial of $L_{k}^{(2)}$ for each $k=0,1,2, \ldots, r$. Then we have the following recursive formula:

$$
\begin{align*}
& V_{0}(t)=1  \tag{11}\\
& V_{1}(t)=t^{2 n_{1}}\left(\mathcal{A}_{2 n_{1}}(t)-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right),  \tag{12}\\
& V_{k}(t)=t^{2 n_{k}} \mathcal{A}_{2 n_{k}}(t) V_{k-1}(t)+t^{2 n_{k}} V_{k-2}(t) . \tag{13}
\end{align*}
$$

Proof. For each $k=1,2, \ldots, r$, let $D_{k}^{(2)}$ be the canonical 2-periodic diagram of the 2-periodic link $L_{k}^{(2)}$. Then

$$
V_{k}(t)=\left.(-A)^{-3 w\left(D_{k}^{(2)}\right)}\left\langle D_{k}^{(2)}\right\rangle\right|_{A=t^{-\frac{1}{4}}}
$$

For each $k=1,2, \ldots, r$, put $f_{k}(A)=(-A)^{-3 w\left(D_{k}^{(2)}\right)}\left\langle D_{k}^{(2)}\right\rangle$. Then $V_{k}(t)=$ $\left.f_{k}(A)\right|_{A=t^{-\frac{1}{4}}}$. We note that $w\left(D_{k}^{(2)}\right)=2 \sum_{i=1}^{k} n_{i}$ and, by Lemma 3.2, $\beta_{n_{i}} \delta+$ $2 \alpha_{n_{i}}=A^{-n_{i}}\left(\left(-A^{4}\right)^{n_{i}}+1\right)$.

Since $L_{0}^{(2)}$ is the trivial knot, $V_{0}(t)=1$. If $n_{1} \geq 1$, then

$$
\begin{aligned}
f_{1}(A) & =(-A)^{-6 n_{1}}\left(\beta_{n_{1}}\left(\beta_{n_{1}} \delta+2 \alpha_{n_{1}}\right)+\alpha_{n_{1}}^{2} \delta\right) \\
& =A^{-6 n_{1}}\left(A^{-2 n_{1}+2}\left(\left(-A^{4}\right)^{n_{1}}+1\right) \sum_{i=0}^{n_{1}-1}\left(-A^{4}\right)^{i}+A^{-2 n_{1}}\left(-A^{2}-A^{-2}\right)\right) \\
& =A^{-8 n_{1}}\left(A^{2} \sum_{i=0}^{2 n_{1}-1}\left(-A^{4}\right)^{i}+\left(-A^{2}-A^{-2}\right)\right)
\end{aligned}
$$

and hence
$V_{1}(t)=t^{2 n_{1}}\left(t^{-\frac{1}{2}} \sum_{i=0}^{2 n_{1}-1}(-t)^{-i}+\left(-t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right)\right)=t^{2 n_{1}}\left(\mathcal{A}_{2 n_{1}}(t)-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)$.

If $n_{1} \leq-1$, then $f_{1}(A)=A^{-8 n_{1}}\left(A^{-2} \sum_{i=0}^{-2 n_{1}-1}\left(-A^{-4}\right)^{i}+\left(-A^{2}-A^{-2}\right)\right)$ and hence

$$
V_{1}(t)=t^{2 n_{1}}\left(t^{\frac{1}{2}} \sum_{i=0}^{-2 n_{1}-1}(-t)^{i}+\left(-t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right)\right)=t^{2 n_{1}}\left(\mathcal{A}_{2 n_{1}}(t)-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)
$$

For $k \geq 2$, from Lemma 4.1, we obtain

$$
f_{k}(A)=(-A)^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right) f_{k-1}(A)+(-A)^{-6 n_{k}} \alpha_{n_{k}}^{2} f_{k-2}(A)
$$

Immediately we have $\left.(-A)^{-6 n_{k}} \alpha_{n_{k}}^{2}\right|_{A=t^{-\frac{1}{4}}}=t^{2 n_{k}}$. If $n_{k} \geq 1$, then it follows that

$$
(-A)^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)=A^{-8 n_{k}+2} \sum_{i=0}^{2 n_{k}-1}\left(-A^{4}\right)^{i}
$$

and hence

$$
\left.(-A)^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)\right|_{A=t^{-\frac{1}{4}}}=t^{2 n_{k}} \mathcal{A}_{2 n_{k}}(t)
$$

If $n_{k} \leq-1$, then

$$
(-A)^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)=A^{-8 n_{k}-2} \sum_{i=0}^{-2 n_{k}-1}\left(-A^{-4}\right)^{i}
$$

and hence

$$
\left.(-A)^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)\right|_{A=t^{-\frac{1}{4}}}=t^{2 n_{k}} \mathcal{A}_{2 n_{k}}(t)
$$

Therefore we have

$$
\begin{aligned}
V_{k}(t) & =\left.f_{k}(A)\right|_{A=t^{-\frac{1}{4}}} \\
& =\left.A^{-6 n_{k}}\left(\beta_{n_{k}}^{2} \delta+2 \alpha_{n_{k}} \beta_{n_{k}}\right)\right|_{A=t^{-\frac{1}{4}}} V_{k-1}(t)+\left.A^{-6 n_{k}} \alpha_{n_{k}}^{2}\right|_{A=t^{-\frac{1}{4}}} V_{k-2}(t) \\
& =t^{2 n_{k}} \mathcal{A}_{2 n_{k}}(t) V_{k-1}(t)+t^{2 n_{k}} V_{k-2}(t) .
\end{aligned}
$$

This completes the proof.
Example 4.3. Let $L$ be the 2-bridge knot with Conway normal form $C(-2$, $-4)$. It is the mirror image of the knot $5_{2}$ in Rolfsen's table [20]. By the discussion in the beginning of this section, $L$ is the 2-periodic knot with rational quotient $\vec{C}[[1,2]]$. Let $n_{1}=1$ and $n_{2}=2$. Then we have that $\mathcal{A}_{2}(t)=t^{-\frac{1}{2}}-t^{-\frac{3}{2}}$ and $\mathcal{A}_{4}(t)=t^{-\frac{1}{2}}-t^{-\frac{3}{2}}+t^{-\frac{5}{2}}-t^{-\frac{7}{2}}$. From Theorem 4.2, it follows that $V_{0}(t)=1$, $V_{1}(t)=-t^{\frac{1}{2}}-t^{\frac{5}{2}}$ and $V_{2}(t)=-t^{6}+t^{5}-t^{4}+2 t^{3}-t^{2}+t$. Hence the Jones polynomial of $L$ is

$$
V_{L}(t)=-t^{6}+t^{5}-t^{4}+2 t^{3}-t^{2}+t
$$

For the Jones polynomial $V_{L}(t)$ of a link $L$, we denote the maximum (resp. minimum) degree of $V_{L}(t)$ by max $\operatorname{deg} V_{L}(t)$ (resp. mindeg $\left.V_{L}(t)\right)$. We also denote the span of $V_{L}(t)$ by span $V_{L}(t)$, i.e., span $V_{L}(t)=\max \operatorname{deg} V_{L}(t)-$ $\min \operatorname{deg} V_{L}(t)$.

Lemma 4.4. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $V_{k}(t)$ be the Jones polynomial of the 2-periodic link $L_{k}^{(2)}$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}\right.\right.$, $\left.\left.\ldots, n_{k}\right]\right]$ for each $k=1,2, \ldots, r$. Put $\epsilon_{k}=\frac{\left|n_{k}\right|}{n_{k}}(k=1,2, \ldots, r)$. For each $k=1,2, \ldots, r$, we have that
(14) $\max \operatorname{deg} V_{k}(t)=\frac{1-k}{2}+\sum_{i=1}^{k}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)$
and
(15) $\min \operatorname{deg} V_{k}(t)=\frac{k-1}{2}+\sum_{i=1}^{k}\left(n_{i}-\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}-\frac{1}{4} \sum_{j=1}^{k-1}\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right)$.

Proof. Let $n$ be any nonzero integer. From (10), we have that

$$
\begin{equation*}
\max \operatorname{deg} \mathcal{A}_{2 n}(t)=-\frac{1}{2}+|n|-n, \quad \min \operatorname{deg} \mathcal{A}_{2 n}(t)=\frac{1}{2}-|n|-n . \tag{16}
\end{equation*}
$$

We will use the recursive formula in Theorem 4.2 and induction on $k$.
If $n_{1} \geq 1$, then max $\operatorname{deg} \mathcal{A}_{2 n_{1}}(t)=-\frac{1}{2}$ and hence max $\operatorname{deg} V_{1}(t)=2 n_{1}+\frac{1}{2}$. If $n_{1} \leq-1$, then max $\operatorname{deg} \mathcal{A}_{2 n_{1}}(t)=-\frac{1}{2}-2 n_{1}$ and hence $\max \operatorname{deg} V_{1}(t)=$ $2 n_{1}-\frac{1}{2}-2 n_{1}=-\frac{1}{2}$. Therefore we have

$$
\max \operatorname{deg} V_{1}(t)=\left(n_{1}+\left|n_{1}\right|\right)+\frac{\epsilon_{1}}{2} .
$$

We assume that the formula (14) holds for $k$.
Case (i): If $n_{k+1} \leq-1$ or $n_{k} \geq 1$, then

$$
\begin{aligned}
& \max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t) V_{k}(t) \\
= & \max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t)+\max \operatorname{deg} V_{k}(t) \\
= & -\frac{1}{2}+\left|n_{k+1}\right|-n_{k+1} \\
& +\frac{1-k}{2}+\sum_{i=1}^{k}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
\geq & \frac{2-k}{2}+\sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
& -1+\left|n_{k+1}\right|-n_{k+1}+\left(n_{k}+\left|n_{k}\right|\right)
\end{aligned}
$$

and

$$
\max \operatorname{deg} V_{k-1}(t)=\frac{2-k}{2}+\sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) .
$$

Since $-1+\left|n_{k+1}\right|-n_{k+1}+\left(n_{k}+\left|n_{k}\right|\right) \geq 1$,

$$
\max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t) V_{k}(t)>\max \operatorname{deg} V_{k-1}(t)
$$

Thus by (13), we have that

$$
\begin{aligned}
& \max \operatorname{deg} V_{k+1}(t) \\
= & 2 n_{k+1}+\max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t) V_{k}(t) \\
= & 2 n_{k+1}-\frac{1}{2}+\left|n_{k+1}\right|-n_{k+1} \\
& +\frac{1-k}{2}+\sum_{i=1}^{k}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
= & \frac{1-(k+1)}{2}+\sum_{i=1}^{k+1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) .
\end{aligned}
$$

Case (ii) : If $n_{k+1} \geq 1$ and $n_{k} \leq-1$, then

$$
\begin{aligned}
& \max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t) V_{k}(t) \\
= & \max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t)+\max \operatorname{deg} V_{k}(t) \\
= & -\frac{1}{2}+\frac{1-k}{2}+\sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)
\end{aligned}
$$

and

$$
\max \operatorname{deg} V_{k-1}(t)=\frac{2-k}{2}+\sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)
$$

Hence $\max \operatorname{deg} \mathcal{A}_{2 n_{k+1}}(t) V_{k}(t)+1=\max \operatorname{deg} V_{k-1}(t)$. Thus we have

$$
\begin{aligned}
& \max \operatorname{deg} V_{k+1}(t) \\
= & 2 n_{k+1}+\max \operatorname{deg} V_{k-1}(t) \\
= & 2 n_{k+1}+\frac{2-k}{2}+\sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
= & \frac{1-(k+1)}{2}+\sum_{i=1}^{k+1}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{k}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) .
\end{aligned}
$$

By a similar argument, we also have the formula (15).
For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, we define an integer $\kappa\left(n_{1}, n_{2}\right.$, $\ldots, n_{r}$ ) (or briefly $\kappa\left(n_{i} ; r\right)$ ) as the number of elements in the $\operatorname{set}\left\{\left(n_{i}, n_{i+1}\right) \mid\right.$ $\left.n_{i} n_{i+1}>0,1 \leq i \leq r-1\right\}$. For example, $\kappa(2,3,2,-1)=2, \kappa(1,2,3,4)=3$ and $\kappa(-1,1,-2,4)=0$. We note that $0 \leq \kappa\left(n_{i} ; r\right) \leq r-1$.

Theorem 4.5. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $L^{(2)}$ be the 2periodic link with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$. Then the span of the Jones polynomial $V_{L^{(2)}}(t)$ of $L^{(2)}$ is given by

$$
\text { span } V_{L^{(2)}}(t)=2 \sum_{i=1}^{r}\left|n_{i}\right|-\kappa\left(n_{i} ; r\right)
$$

Proof. From Lemma 4.4, we have

$$
\operatorname{span} V_{L^{(2)}}(t)=\max \operatorname{deg} V_{L^{(2)}}(t)-\min \operatorname{deg} V_{L^{(2)}}(t)
$$

$$
\begin{aligned}
= & \frac{1-r}{2}+\sum_{i=1}^{r}\left(n_{i}+\left|n_{i}\right|\right)+\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{r-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
& -\frac{r-1}{2}-\sum_{i=1}^{r}\left(n_{i}-\left|n_{i}\right|\right)-\frac{\epsilon_{1}}{2}+\frac{1}{4} \sum_{j=1}^{r-1}\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right) \\
= & (1-r)+2 \sum_{i=1}^{r}\left|n_{i}\right|+\frac{1}{4} \sum_{j=1}^{r-1}\left[\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)+\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right)\right] \\
= & 2 \sum_{i=1}^{r}\left|n_{i}\right|-\left\{(r-1)-\sum_{j=1}^{r-1} \frac{1-\epsilon_{j} \epsilon_{j+1}}{2}\right\} .
\end{aligned}
$$

Because $\left(1-\epsilon_{j} \epsilon_{j+1}\right) / 2$ is 1 if $n_{j}$ and $n_{j+1}$ have different signs and 0 otherwise, $\sum_{j=1}^{r-1}\left(1-\epsilon_{j} \epsilon_{j+1}\right) / 2$ counts the number of pairs $\left(n_{j}, n_{j+1}\right)$ with $n_{j} n_{j+1}<0$. Therefore,

$$
\kappa\left(n_{i} ; r\right)=(r-1)-\sum_{j=1}^{r-1} \frac{1-\epsilon_{j} \epsilon_{j+1}}{2},
$$

hence we have

$$
\operatorname{span} V_{L^{(2)}}(t)=2 \sum_{i=1}^{r}\left|n_{i}\right|-\kappa\left(n_{i} ; r\right)
$$

This completes the proof.
Corollary 4.6. For given nonzero integers $a_{1}, a_{2}, \ldots, a_{r}$, let $L$ be the 2-bridge knot or link with Conway normal form $C\left(2 a_{1}, 2 a_{2}, \ldots, 2 a_{r}\right)$. Then the crossing number of $L$ is given by

$$
\begin{equation*}
c(L)=2 \sum_{i=1}^{r}\left|a_{i}\right|-\kappa\left(-a_{1}, a_{2},-a_{3}, \ldots,(-1)^{r} a_{r}\right) . \tag{17}
\end{equation*}
$$

Proof. From [3, Theorem 2.1], $L$ is a 2-periodic link with rational quotient $\vec{C}\left[\left[-a_{1}, a_{2}, \ldots,(-1)^{r} a_{r}\right]\right]$ (for more detail, see Remark $\left.4.7(2)\right)$. By Theorem 4.5, we obtain that

$$
\operatorname{span} V_{L}(t)=2 \sum_{i=1}^{r}\left|a_{i}\right|-\kappa\left(-a_{1}, a_{2},-a_{3}, \ldots,(-1)^{r} a_{r}\right)
$$

Since any 2-bridge link is alternating, the span of its Jones polynomial is equal to its crossing number. Hence the crossing number of $L$ is given by

$$
c(L)=2 \sum_{i=1}^{r}\left|a_{i}\right|-\kappa\left(-a_{1}, a_{2},-a_{3}, \ldots,(-1)^{r} a_{r}\right) .
$$

This completes the proof.
Remark 4.7. (1) It should be noticed that the result in Corollary 4.6 is not new. It is well known that every 2 -bridge knot or link $L$ has the standard Conway normal form $C\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ such that all $b_{1}, b_{2}, \ldots, b_{n}$ are either positive or negative and $C\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a reduced alternating diagram for $L$. Hence $c(L)=\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{n}\right|$. It is also known that $L$ admits a Conway normal form $C\left(2 a_{1}, 2 a_{2}, \ldots, 2 a_{r}\right)$ for some nonzero integers $a_{1}, a_{2}, \ldots, a_{r}$ [7], adopted in Corollary 4.6. The authors do not know whether the formula (17) of Corollary 4.6 can be directly derived from the standard Conway normal form $C\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ or not.
(2) Let $L$ be a link of two components and let $L_{1}$ be the same link as $L$ but with the opposite orientation on only one component of $L$. Note that $L$ and $L_{1}$ are may be different. But the crossing numbers of $L$ and $L_{1}$ are the same. Since every 2-bridge link is invertible, there are at most two oriented 2-bridge links with the same unoriented diagram. Without loss of generality, in the proof of Corollary 4.6, we can consider that $L$ is a 2-periodic link with rational quotient $\vec{C}\left[\left[-a_{1}, a_{2}, \ldots,(-1)^{r} a_{r}\right]\right]$.

## 5. Recursive formula for the Jones polynomial of 3-periodic links

In this section, we give a recursive formula for the Jones polynomial of a 3 -periodic link with rational quotient. We also calculate the span of the Jones polynomial under certain conditions.

Lemma 5.1. Let $n_{1}, n_{2}, \ldots, n_{r}$ be given nonzero integers. For each $k=$ $1,2, \ldots, r$, let $D_{k}^{(3)}$ be the canonical 3-periodic diagram of the 3-periodic link with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right]$. Let $D_{0}^{(2)}$ denote the standard diagram of the unknot. Then we have the following recursive formula:

$$
\begin{aligned}
\left\langle D_{0}^{(3)}\right\rangle= & 1 \\
\gamma_{1}= & \delta \\
\left\langle D_{1}^{(3)}\right\rangle= & 3 \alpha_{n_{1}} \beta_{n_{1}}^{2}+\left(3 \alpha_{n_{1}}^{2} \beta_{n_{1}}+\beta_{n_{1}}^{3}\right) \delta+\alpha_{n_{1}}^{3} \delta^{2} \\
\gamma_{k}= & (-A)^{3 n_{k-1}}\left(\alpha_{n_{k-1}}^{2} \gamma_{n_{k-1}}+\left(\beta_{n_{k-1}}^{2} \delta+2 \alpha_{n_{k-1}} \beta_{n_{k-1}}\right)\left\langle D_{k-2}^{(3)}\right\rangle\right) \\
\left\langle D_{k}^{(3)}\right\rangle= & \left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)\left\langle D_{k-1}^{(3)}\right\rangle+3 \alpha_{n_{k}}^{2} \beta_{n_{k}} \gamma_{k} \\
& +(-A)^{9 n_{k-1}} \alpha_{n_{k}}^{3}\left\langle D_{k-2}^{(3)}\right\rangle, \quad k=2,3, \ldots, r .
\end{aligned}
$$

Proof. For a weight function $s \in \mathcal{S}_{k}$, let $D_{k}^{(3)}\left(s\left(T_{k, 1}\right), s\left(T_{k, 2}\right), s\left(T_{k, 3}\right)\right)$ be the diagram obtained from $D_{k}^{(3)}$ by replacing each tangle $T_{k, i}$ by a $s\left(T_{k, i}\right)$-tangle ( $i=1,2,3$ ).

If $k=1$, then $D_{1}^{(3)}(0, \infty, \infty), D_{1}^{(3)}(\infty, 0, \infty)$ and $D_{1}^{(3)}(\infty, \infty, 0)$ consist of a simple closed curve. We also observe that $D_{1}^{(3)}(0,0, \infty), D_{1}^{(3)}(0, \infty, 0)$, $D_{1}^{(3)}(\infty, 0,0)$ and $D_{1}^{(3)}(\infty, \infty, \infty)$ consist of two simple closed curves, and $D_{1}^{(3)}(0,0,0)$ consists of three simple closed curves. By Proposition 3.4, we have

$$
\left\langle D_{1}^{(3)}\right\rangle=3 \alpha_{n_{1}} \beta_{n_{1}}^{2}+\left(3 \alpha_{n_{1}}^{2} \beta_{n_{1}}+\beta_{n_{1}}^{3}\right) \delta+\alpha_{n_{1}}^{3} \delta^{2}
$$

Now we assume that the recursive formula (18) holds for $n_{1}, n_{2}, \ldots, n_{k-1}$ with $k \geq 2$. Then $D_{k}^{(3)}(\infty, \infty, \infty), D_{k}^{(3)}(0, \infty, \infty), D_{k}^{(3)}(\infty, 0, \infty), D_{k}^{(3)}(\infty, \infty, 0)$, $D_{k}^{(3)}(0,0, \infty), D_{k}^{(3)}(0, \infty, 0), D_{k}^{(3)}(\infty, 0,0)$ and $D_{k}^{(3)}(0,0,0)$ are isotopic to the diagrams as shown in Figure 11. Thus $D_{k}^{(3)}(0, \infty, \infty), D_{k}^{(3)}(\infty, 0, \infty)$ and $D_{k}^{(3)}(\infty, \infty, 0)$ are isotopic to the diagram $D_{k-1}^{(3)}$, and $D_{k}^{(3)}(\infty, \infty, \infty)$ is isotopic to the diagram $D_{k-1}^{(3)} \sqcup \bigcirc$. Moreover $D_{k}^{(3)}(0,0,0)$ is obtained from $D_{k-2}^{(3)}$ by applying the Reidemeister move I. Since $D_{k}^{(3)}$ is a periodic diagram, $D_{k}^{(3)}(0,0, \infty)$, $\underline{\underline{D_{k}^{(3)}}(0, \infty, 0)}$ and $D_{k}^{(3)}(\infty, 0,0)$ are isotopic to each other. Let $\overline{D_{k}^{(3)}(\infty, 0,0)}$ and $\overline{D_{k}^{(3)}(\infty, 0,0)}$ be the diagrams in Figure $12(\mathrm{a})$ and (b), respectively. They are obtained from $D_{k-1}^{(3)}(\infty, 0,0)$ and $D_{k-2}^{(3)}$ respectively by applying the Reidemeister move I. For each $k=1,2, \ldots, r$, we define a Laurent polynomials $\gamma_{k}$ by

$$
\gamma_{k}=\left\langle D_{k}^{(3)}(\infty, 0,0)\right\rangle
$$

Since $D_{1}^{(3)}(\infty, 0,0)$ is of two components, $\gamma_{1}=\delta$. By applying Lemma 3.1 to $T_{k-1,1}$ and $T_{k-1,2}$ in $D_{k}^{(3)}(\infty, 0,0)$, we get

$$
\begin{aligned}
\gamma_{k} & =\alpha_{n_{k-1}}^{2}\left\langle\overline{\left\langle D_{k}^{(3)}(\infty, 0,0)\right.}\right\rangle+\left(\beta_{n_{k-1}}^{2} \delta+2 \alpha_{n_{k-1}} \beta_{n_{k-1}}\right)\left\langle\overline{\overline{D_{k}^{(3)}(\infty, 0,0)}}\right. \\
& =(-A)^{3 n_{k-1}}\left(\alpha_{n_{k-1}}^{2} \gamma_{n_{k-1}}+\left(\beta_{n_{k-1}}^{2} \delta+2 \alpha_{n_{k-1}} \beta_{n_{k-1}}\right)\left\langle D_{k-2}^{(3)}\right\rangle\right)
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\left\langle D_{k}^{(3)}\right\rangle= & \beta_{n_{k}}^{3}\left\langle D_{k}^{(3)}(\infty, \infty, \infty)\right\rangle+\beta_{n_{k}}^{2} \alpha_{n_{k}}\left\langle D_{k}^{(3)}(0, \infty, \infty)\right\rangle \\
& +\beta_{n_{k}}^{2} \alpha_{n_{k}}\left\langle D_{k}^{(3)}(\infty, 0, \infty)\right\rangle+\beta_{n_{k}}^{2} \alpha_{n_{k}}\left\langle D_{k}^{(3)}(\infty, \infty, 0)\right\rangle \\
& +\beta_{n_{k}} \alpha_{n_{k}}^{2}\left\langle D_{k}^{(3)}(0,0, \infty)\right\rangle+\beta_{n_{k}} \alpha_{n_{k}}^{2}\left\langle D_{k}^{(3)}(0, \infty, 0)\right\rangle \\
& +\beta_{n_{k}} \alpha_{n_{k}}^{2}\left\langle D_{k}^{(3)}(\infty, 0,0)\right\rangle+\alpha_{n_{k}}^{3}\left\langle D_{k}^{(3)}(0,0,0)\right\rangle \\
= & \left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)\left\langle D_{k-1}^{(3)}\right\rangle+3 \alpha_{n_{k}}^{2} \beta_{n_{k}} \gamma_{k}+(-A)^{9 n_{k-1}} \alpha_{n_{k}}^{3}\left\langle D_{k-2}^{(3)}\right\rangle .
\end{aligned}
$$

This completes the proof.


Figure 11
For any nonzero integer $n$, let $\mathcal{B}_{n}(t)$ be a Laurent polynomial in $\mathbb{Z}\left[t^{ \pm \frac{1}{2}}\right]$ defined by

$$
\mathcal{B}_{n}(t)= \begin{cases}t^{-1}\left((-t)^{-n}+2\right)\left(\sum_{i=0}^{n-1}(-t)^{-i}\right)^{2} & \text { if } n \geq 1  \tag{19}\\ t\left((-t)^{-n}+2\right)\left(\sum_{i=0}^{-n-1}(-t)^{i}\right)^{2} & \text { if } n \leq-1\end{cases}
$$

We note that $\mathcal{B}_{n}(t)=\left((-t)^{-n}+2\right) \mathcal{A}_{n}(t)^{2}$.


Figure 12
Theorem 5.2. Let $n_{1}, n_{2}, \ldots, n_{r}$ be given nonzero integers. Let $L_{k}^{(3)}$ be 3periodic link with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right]$ and let $L_{0}^{(3)}$ the trivial knot. Let $V_{k}(t)$ be the Jones polynomial of $L_{k}^{(3)}$ for each $k=0,1,2, \ldots, r$. Then we have the following recursive formula:

$$
\begin{align*}
& V_{0}(t)=1  \tag{20}\\
& V_{1}(t)=(-t)^{3 n_{1}}\left(\mathcal{B}_{n_{1}}(t)+3(-t)^{-n_{1}}+t^{-1}-1+t\right), \\
& V_{k}(t)=(-t)^{3 n_{k}}\left(\mathcal{B}_{n_{k}}(t) V_{k-1}(t)+3 \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)+V_{k-2}(t)\right), \tag{22}
\end{align*}
$$

$$
\begin{aligned}
& \lambda_{1}(t)=-t^{-\frac{1}{2}}-t^{\frac{1}{2}} \\
& \lambda_{k}(t)=t^{2 n_{k-1}}\left(\lambda_{k-1}(t)+\mathcal{A}_{2 n_{k-1}}(t) V_{k-2}(t)\right) .
\end{aligned}
$$

Proof. For each $k=1,2, \ldots, r$, let $D_{k}^{(3)}$ be the canonical 3-periodic diagram of the 3-periodic link $L_{k}^{(3)}$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right]$. Then

$$
V_{k}(t)=\left.(-A)^{-3 w\left(D_{k}^{(3)}\right)}\left\langle D_{k}^{(3)}\right\rangle\right|_{A=t^{-\frac{1}{4}}}
$$

For each $k=1,2, \ldots, r$, put $f_{k}(A)=(-A)^{-3 w\left(D_{k}^{(3)}\right)}\left\langle D_{k}^{(3)}\right\rangle$. Then $V_{k}(t)=$ $\left.f_{k}(A)\right|_{A=t^{-\frac{1}{4}}}$. We note that $w\left(D_{k}^{(3)}\right)=3 \sum_{i=1}^{k} n_{i}$ and that, by Lemma 3.2, $\beta_{n_{i}} \delta+3 \alpha_{n_{i}}=A^{-n_{i}}\left(\left(-A^{4}\right)^{n_{i}}+2\right)$.

Since $L_{0}^{(3)}$ is the trivial knot, $V_{0}(t)=1$. If $n_{1} \geq 1$, then

$$
\begin{aligned}
f_{1}(A)= & (-A)^{-9 n_{1}}\left(\beta_{n_{1}}^{2}\left(3 \alpha_{n_{1}}+\beta_{n_{1}} \delta\right)+\alpha_{n_{1}}^{2} \delta\left(3 \beta_{n_{1}}+\alpha_{n_{1}} \delta\right)\right) \\
= & (-1)^{n_{1}} A^{-12 n_{1}+4}\left(\sum_{i=0}^{n_{1}-1}\left(-A^{4}\right)^{i}\right)^{2}\left(\left(-A^{4}\right)^{n_{1}}+2\right) \\
& +(-1)^{n_{1}} A^{-12 n_{1}+4}\left(-1-A^{-4}\right)\left(3 \sum_{i=0}^{n_{1}-1}\left(-A^{4}\right)^{i}+\left(-1-A^{-4}\right)\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
V_{1}(t)= & (-1)^{n_{1}} t^{3 n_{1}-1}\left(\sum_{i=0}^{n_{1}-1}(-t)^{-i}\right)^{2}\left((-t)^{-n_{1}}+2\right) \\
& +(-1)^{n_{1}} t^{3 n_{1}-1}(-1-t)\left(3 \sum_{i=0}^{n_{1}-1}(-t)^{-i}+(-1-t)\right) \\
= & (-t)^{3 n_{1}}\left(\mathcal{B}_{n_{1}}(t)+3(-t)^{-n_{1}}+t^{-1}-1+t\right) .
\end{aligned}
$$

If $n_{1} \leq-1$, then

$$
\begin{aligned}
f_{1}(A)= & (-1)^{n_{1}} A^{-12 n_{1}-4}\left(\sum_{i=0}^{-n_{1}-1}\left(-A^{-4}\right)^{i}\right)^{2}\left(\left(-A^{4}\right)^{n_{1}}+2\right) \\
& +(-1)^{n_{1}} A^{-12 n_{1}+4}\left(-1-A^{-4}\right)\left(3 A^{-4} \sum_{i=0}^{-n_{1}-1}\left(-A^{-4}\right)^{i}+\left(-1-A^{-4}\right)\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
V_{1}(t)= & (-1)^{n_{1}} t^{3 n_{1}+1}\left(\sum_{i=0}^{-n_{1}-1}(-t)^{i}\right)^{2}\left((-t)^{-n_{1}}+2\right) \\
& +(-1)^{n_{1}} t^{3 n_{1}-1}(-1-t)\left(3 t \sum_{i=0}^{-n_{1}-1}(-t)^{i}+(-1-t)\right) \\
= & (-t)^{3 n_{1}}\left(\mathcal{B}_{n_{1}}(t)+3(-t)^{-n_{1}}+t^{-1}-1+t\right) .
\end{aligned}
$$

Put $\lambda_{1}(t)=\left.\delta\right|_{A=t^{-\frac{1}{4}}}$ and $\lambda_{k}(t)=\left.(-A)^{-9 \sum_{i=1}^{k-1} n_{i}} \gamma_{k}\right|_{A=t^{-\frac{1}{4}}}$ for each $k=$ $2,3, \ldots, r$. Then $\lambda_{1}(t)=-t^{-\frac{1}{2}}-t^{\frac{1}{2}}$ and

$$
\begin{aligned}
& \lambda_{k}(t)=(-A)^{-9} \sum_{i=1}^{k-1} n_{i} \\
&\left.(-A)^{3 n_{k-1}} \alpha_{n_{k-1}}^{2} \gamma_{n_{k-1}}\right|_{A=t^{-\frac{1}{4}}} \\
&+\left.(-A)^{-9 \sum_{i=1}^{k-1} n_{i}}(-A)^{3 n_{k-1}} \beta_{n_{k-1}}\left(\beta_{n_{k-1}} \delta+2 \alpha_{n_{k-1}}\right)\left\langle D_{k-2}^{(3)}\right\rangle\right|_{A=t^{-\frac{1}{4}}} \\
&=\left.A^{-8 n_{k-1}}(-A)^{-9 \sum_{i=1}^{k-2} n_{i}} \gamma_{n_{k-1}}\right|_{A=t^{-\frac{1}{4}}} \\
&+\left.A^{-7 n_{k-1}}\left(\left(-A^{4}\right)^{n_{k-1}}+1\right) \beta_{n_{k-1}}(-A)^{-9 \sum_{i=1}^{k-2} n_{i}}\left\langle D_{k-2}^{(3)}\right\rangle\right|_{A=t^{-\frac{1}{4}}} \\
&= t^{2 n_{k-1}} \lambda_{k-1}(t)+t^{2 n_{k-1}}\left((-t)^{-n_{k-1}}+1\right) \mathcal{A}_{n_{k-1}}(t) V_{k-2}(t) \\
&= t^{2 n_{k-1}} \lambda_{k-1}(t)+t^{2 n_{k-1}} \mathcal{A}_{2 n_{k-1}}(t) V_{k-2}(t) .
\end{aligned}
$$

For $k \geq 2$, by Lemma 5.1, we obtain

$$
\begin{aligned}
f_{k}(A)= & (-A)^{-9 \sum_{i=1}^{k} n_{i}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)\left\langle D_{k-1}^{(3)}\right\rangle \\
& +(-A)^{-9 \sum_{i=1}^{k} n_{i}} 3 \alpha_{n_{k}}^{2} \beta_{n_{k}} \gamma_{k}+(-A)^{-9 \sum_{i=1}^{k} n_{i}}(-A)^{9 n_{k-1}} \alpha_{n_{k}}^{3}\left\langle D_{k-2}^{(3)}\right\rangle \\
= & (-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right) f_{k-1}(A) \\
& +(-A)^{-9 \sum_{i=1}^{k} n_{i}} 3 \alpha_{n_{k}}^{2} \beta_{n_{k}} \gamma_{k}+(-A)^{-9 n_{k}} \alpha_{n_{k}}^{3} f_{k-2}(A) .
\end{aligned}
$$

Note that $\left.(-A)^{-9 n_{k}} \alpha_{n_{k}}^{3}\right|_{A=t^{-\frac{1}{4}}}=(-1)^{n_{k}} t^{3 n_{k}}$ and $\left.(-A)^{-9 n_{k}} \alpha_{n_{k}}^{2} \beta_{n_{k}}\right|_{A=t^{-\frac{1}{4}}}=$ $(-1)^{n_{k}} t^{3 n_{k}} \mathcal{A}_{n_{k}}(t)$. If $n_{k} \geq 1$, then by Lemma 3.2 we have $(-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)=(-1)^{n_{k}} A^{-12 n_{k}+4}\left(\left(-A^{4}\right)^{n_{k}}+2\right)\left(\sum_{i=0}^{n_{k}-1}\left(-A^{4}\right)^{i}\right)^{2}$
and hence

$$
\begin{aligned}
& \left.(-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)\right|_{A=t^{-\frac{1}{4}}} \\
= & (-1)^{n_{k}} t^{3 n_{k}-1}\left((-t)^{-n_{k}}+2\right)\left(\sum_{i=0}^{n_{k}-1}(-t)^{-i}\right)^{2} \\
= & (-t)^{3 n_{k}} \mathcal{B}_{n_{k}}(t) .
\end{aligned}
$$

If $n_{k} \leq-1$, then by Lemma 3.2 we also have

$$
(-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)=(-1)^{n_{k}} A^{-12 n_{k}-4}\left(\left(-A^{4}\right)^{n_{k}}+2\right)\left(\sum_{i=0}^{-n_{k}-1}\left(-A^{-4}\right)^{i}\right)^{2}
$$

and hence

$$
\begin{aligned}
& \left.(-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right)\right|_{A=t^{-\frac{1}{4}}} \\
= & (-1)^{n_{k}} t^{3 n_{k}+1}\left((-t)^{-n_{k}}+2\right)\left(\sum_{i=0}^{-n_{k}-1}(-t)^{i}\right)^{2} \\
= & (-t)^{3 n_{k}} \mathcal{B}_{n_{k}}(t) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
V_{k}(t)= & \left.f_{k}(A)\right|_{A=t^{-\frac{1}{4}}} \\
= & \left.(-A)^{-9 n_{k}}\left(\beta_{n_{k}}^{3} \delta+3 \alpha_{n_{k}} \beta_{n_{k}}^{2}\right) f_{k-1}(A)\right|_{A=t^{-\frac{1}{4}}} \\
& +\left.(-A)^{-9 \sum_{i=1}^{k} n_{i}} 3 \alpha_{n_{k}}^{2} \beta_{n_{k}} \gamma_{k}\right|_{A=t^{-\frac{1}{4}}}+\left.(-A)^{-9 n_{k}} \alpha_{n_{k}}^{3} f_{k-2}(A)\right|_{A=t^{-\frac{1}{4}}} . \\
= & (-t)^{3 n_{k}} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)+3(-t)^{3 n_{k}} \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)+(-t)^{3 n_{k}} V_{k-2}(t) .
\end{aligned}
$$

This completes the proof.

Example 5.3. Let $L$ be the 3-periodic knot with rational quotient $\vec{C}[[1,-1,1]]$. Then $L$ is the knot $9_{40}$ in Rolfsen's table [20]. Let $n_{1}=1, n_{2}=-1$ and $n_{3}=1$. Then we have that $\mathcal{A}_{1}(t)=t^{-\frac{1}{2}}, \mathcal{A}_{-1}(t)=t^{\frac{1}{2}}, \mathcal{A}_{2}(t)=t^{-\frac{1}{2}}-t^{-\frac{3}{2}}$, $\mathcal{A}_{-2}(t)=t^{\frac{1}{2}}-t^{\frac{3}{2}}, \mathcal{B}_{1}(t)=2 t^{-1}-t^{-2}$ and $\mathcal{B}_{-1}(t)=2 t-t^{2}$. From Theorem 5.2, we get that $V_{0}(t)=1, V_{1}(t)=-t^{4}+t^{3}+t, \lambda_{2}=-t^{\frac{5}{2}}-t^{\frac{1}{2}}$, $V_{2}(t)=-t^{3}+3 t^{2}-2 t+4-2 t^{-1}+3 t^{-2}-t^{-3}, \lambda_{3}=t^{\frac{7}{2}}-2 t^{\frac{5}{2}}+t^{\frac{3}{2}}-2 t^{\frac{1}{2}}+t^{-\frac{1}{2}}-t^{-\frac{3}{2}}$ and $V_{3}(t)=t^{7}-4 t^{6}+8 t^{5}-11 t^{4}+13 t^{3}-13 t^{2}+11 t-8+5 t^{-1}-t^{-2}$. Hence the Jones polynomial of $L$ is

$$
V_{L}(t)=t^{7}-4 t^{6}+8 t^{5}-11 t^{4}+13 t^{3}-13 t^{2}+11 t-8+5 t^{-1}-t^{-2} .
$$

Let $n$ be any nonzero integer. From (19), we note that

$$
\begin{equation*}
\max \operatorname{deg} \mathcal{B}_{n}(t)=-1+\frac{3}{2}(|n|-n), \quad \min \operatorname{deg} \mathcal{B}_{n}(t)=1-\frac{3}{2}(|n|+n) \tag{25}
\end{equation*}
$$

From (10), we also note that

$$
\begin{equation*}
\max \operatorname{deg} \mathcal{A}_{n}(t)=-\frac{1}{2}+\frac{1}{2}(|n|-n), \quad \min \operatorname{deg} \mathcal{A}_{n}(t)=\frac{1}{2}-\frac{1}{2}(|n|+n) \tag{26}
\end{equation*}
$$

Lemma 5.4. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $V_{k}(t)$ be the Jones polynomial of the 3-periodic link $L_{k}^{(3)}$ with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots\right.\right.$, $\left.\left.n_{k}\right]\right]$. Suppose that $n_{i} \neq 1$ for all $i=1,2, \ldots, r$. In the recursive formula in Theorem 5.2, we have the following properties for each $k=2,3, \ldots, r$ :
(1) If $n_{k}>1$ and $n_{k-1} \leq-1$, then $\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)<\max \operatorname{deg} V_{k-2}(t)$ and max $\operatorname{deg} \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)<\max \operatorname{deg} V_{k-2}(t)$.
(2) If $n_{k} \leq-1$ or $n_{k-1}>1$, then $\max \operatorname{deg} V_{k-2}(t)<\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)$ and max $\operatorname{deg} \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)<\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)$.
Proof. We will use induction on $k$. If $n_{1}>1$, then $\max \operatorname{deg} \mathcal{B}_{n_{1}}(t)=-1$. From (21), we have max $\operatorname{deg} V_{1}(t)=3 n_{1}+1$. If $n_{1} \leq-1$, then $\max \operatorname{deg} \mathcal{B}_{n_{1}}(t)=$ $-1-3 n_{1}$. From (21), we get max $\operatorname{deg} V_{1}(t)=-1$. Therefore we have

$$
\max \operatorname{deg} V_{1}(t)=\frac{3}{2}\left(\left|n_{1}\right|+n_{1}\right)+\epsilon_{1} .
$$

From (20) and (24), we note that max $\operatorname{deg} \lambda_{2}(t)=\left(\left|n_{1}\right|+n_{1}\right)+\frac{1}{2} \epsilon_{1}$ and $\max \operatorname{deg} V_{0}(t)=0$. If $n_{2}>1$ and $n_{1} \leq-1$, then max $\operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)=-2$ and $\max \operatorname{deg} \mathcal{A}_{n_{2}}(t) \lambda_{2}(t)=-1$. Hence we have that if $n_{2}>1$ and $n_{1} \leq-1$, then

$$
\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)<\max \operatorname{deg} V_{0}(t)
$$

and

$$
\max \operatorname{deg} \mathcal{A}_{n_{2}}(t) \lambda_{2}(t)<\max \operatorname{deg} V_{0}(t)
$$

If $n_{2} \leq-1$, then

$$
\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)=-1-3 n_{2}+\frac{3}{2}\left(\left|n_{1}\right|+n_{1}\right)+\epsilon_{1}
$$

and

$$
\max \operatorname{deg} \mathcal{A}_{n_{2}}(t) \lambda_{2}(t)=-\frac{1}{2}-n_{2}+\left(\left|n_{1}\right|+n_{1}\right)+\frac{1}{2} \epsilon_{1}
$$

If $n_{1}>1$, then

$$
\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)=\frac{3}{2}\left(\left|n_{2}\right|-n_{2}\right)+3 n_{1}
$$

and

$$
\max \operatorname{deg} \mathcal{A}_{n_{2}}(t) \lambda_{2}(t)=\frac{1}{2}\left(\left|n_{2}\right|-n_{2}\right)+2 n_{1} .
$$

Hence we have that if $n_{2} \leq-1$ or $n_{1}>1$, then

$$
\max \operatorname{deg} V_{0}(t)<\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)
$$

and

$$
\max \operatorname{deg} \mathcal{A}_{n_{2}}(t) \lambda_{2}(t)<\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t)
$$

Now we assume that the statements hold for $\leq k$. From now on we will prove that the statements hold for $k+1$.

Case (i): Suppose that $n_{k+1}>1$ and $n_{k} \leq-1$. By the induction hypothesis and (22), we have max $\operatorname{deg} V_{k}(t)=3 n_{k}+\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)$. Hence we have

$$
\begin{align*}
\max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t) & =-1+\max \operatorname{deg} V_{k}(t) \\
& =-1+3 n_{k}+\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t) \\
& =-1+3 n_{k}+\left(-1-3 n_{k}\right)+\max \operatorname{deg} V_{k-1}(t) \\
& =-2+\max \operatorname{deg} V_{k-1}(t) \\
& <\max \operatorname{deg} V_{k-1}(t) . \tag{27}
\end{align*}
$$

From (24), it is true that either max $\operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \lambda_{k}(t)$ or $\max \operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \mathcal{A}_{2 n_{k}}(t) V_{k-1}(t)$. If max $\operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+$ $\max \operatorname{deg} \lambda_{k}(t)$, then, by the induction hypothesis, we get

$$
\begin{aligned}
\max \operatorname{deg} \lambda_{k+1}(t) & \leq 2 n_{k}+\max \operatorname{deg} \lambda_{k}(t) \\
& <2 n_{k}-\max \operatorname{deg} \mathcal{A}_{n_{k}}(t)+\max \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t) \\
& =-\frac{1}{2}+\max \operatorname{deg} V_{k-1}(t)
\end{aligned}
$$

If max $\operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \mathcal{A}_{2 n_{k}}(t) V_{k-1}(t)$, then we have

$$
\max \operatorname{deg} \lambda_{k+1}(t) \leq-\frac{1}{2}+\max \operatorname{deg} V_{k-1}(t)
$$

Hence we know

$$
\begin{align*}
\max \operatorname{deg} \mathcal{A}_{n_{k+1}}(t) \lambda_{k+1}(t) & =-\frac{1}{2}+\max \operatorname{deg} \lambda_{k+1}(t) \\
& \leq-1+\max \operatorname{deg} V_{k-1}(t) \\
& <\max \operatorname{deg} V_{k-1}(t) . \tag{28}
\end{align*}
$$

By (27) and (28), it follows that the statement (1) holds.

Case (ii) : Suppose that $n_{k+1} \leq-1$ or $n_{k}>1$. By the induction hypothesis and (22), we have that

$$
\begin{align*}
\max \operatorname{deg} V_{k}(t) & \geq 3 n_{k}+\max \operatorname{deg} \mathcal{B}_{n_{k}}(t)+\max \operatorname{deg} V_{k-1}(t) \\
& =-1+\frac{3}{2}\left(\left|n_{k}\right|+n_{k}\right)+\max \operatorname{deg} V_{k-1}(t) \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
\max \operatorname{deg} \lambda_{k}(t) & \leq \max \operatorname{deg} V_{k}(t)-3 n_{k}-\max \operatorname{deg} \mathcal{A}_{n_{k}}(t) \\
& =\max \operatorname{deg} V_{k}(t)-3 n_{k}+\frac{1}{2}-\frac{1}{2}\left(\left|n_{k}\right|-n_{k}\right) . \tag{30}
\end{align*}
$$

From (29), we get

$$
\begin{aligned}
& \max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t) \\
= & -1+\frac{3}{2}\left(\left|n_{k+1}\right|-n_{k+1}\right)+\max \operatorname{deg} V_{k}(t) \\
\geq & -1+\frac{3}{2}\left(\left|n_{k+1}\right|-n_{k+1}\right)-1+\frac{3}{2}\left(\left|n_{k}\right|+n_{k}\right)+\max \operatorname{deg} V_{k-1}(t) \\
= & -2+\frac{3}{2}\left(\left|n_{k+1}\right|-n_{k+1}\right)+\frac{3}{2}\left(\left|n_{k}\right|+n_{k}\right)+\max \operatorname{deg} V_{k-1}(t) \\
> & \max \operatorname{deg} V_{k-1}(t) .
\end{aligned}
$$

From (24), we know that either

$$
\max \operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \lambda_{k}(t)
$$

or

$$
\max \operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \mathcal{A}_{2 n_{k}}(t)+\max \operatorname{deg} V_{k-1}(t)
$$

If max $\operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \lambda_{k}(t)$, then from (30), we calculate

$$
\begin{aligned}
\max \operatorname{deg} \lambda_{k+1}(t) \leq & 2 n_{k}+\max \operatorname{deg} \lambda_{k}(t) \\
\leq & 2 n_{k}+\max \operatorname{deg} V_{k}(t)-3 n_{k}+\frac{1}{2}-\frac{1}{2}\left(\left|n_{k}\right|-n_{k}\right) \\
= & \max \operatorname{deg} V_{k}(t)+\frac{1}{2}-\frac{1}{2}\left(\left|n_{k}\right|+n_{k}\right) \\
= & \max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t)-\max \operatorname{deg} \mathcal{A}_{n_{k+1}}(t) \\
& +\left(1-\frac{1}{2}\left(\left|n_{k}\right|+n_{k}\right)-\left(\left|n_{k+1}\right|-n_{k+1}\right)\right)
\end{aligned}
$$

If $\max \operatorname{deg} \lambda_{k+1}(t) \leq 2 n_{k}+\max \operatorname{deg} \mathcal{A}_{2 n_{k}}(t)+\max \operatorname{deg} V_{k-1}(t)$, then from (29), we have

$$
\begin{aligned}
\max \operatorname{deg} \lambda_{k+1}(t) \leq & 2 n_{k}+\max \operatorname{deg} \mathcal{A}_{2 n_{k}}(t)+\max \operatorname{deg} V_{k-1}(t) \\
\leq & 2 n_{k}-\frac{1}{2}+\left(\left|n_{k}\right|-n_{k}\right)+1-\frac{3}{2}\left(\left|n_{k}\right|+n_{k}\right)+\max \operatorname{deg} V_{k}(t) \\
= & \frac{1}{2}-\frac{1}{2}\left(\left|n_{k}\right|+n_{k}\right)+\max \operatorname{deg} V_{k}(t) \\
= & \max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t)-\max \operatorname{deg} \mathcal{A}_{n_{k+1}}(t) \\
& +\left(1-\frac{1}{2}\left(\left|n_{k}\right|+n_{k}\right)-\left(\left|n_{k+1}\right|-n_{k+1}\right)\right) .
\end{aligned}
$$

Since $n_{k+1} \leq-1$ or $n_{k}>1$, we get that $1-\frac{1}{2}\left(\left|n_{k}\right|+n_{k}\right)-\left(\left|n_{k+1}\right|-n_{k+1}\right)<0$ and hence

$$
\begin{equation*}
\max \operatorname{deg} \mathcal{A}_{n_{k+1}}(t) \lambda_{k+1}(t)<\max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t) . \tag{32}
\end{equation*}
$$

By (31) and (32), it follows that the statement (2) holds. This completes the proof.

Lemma 5.5. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $V_{k}(t)$ be the Jones polynomial of the 3-periodic link $L_{k}^{(3)}$ with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots\right.\right.$, $\left.n_{k}\right]$. Suppose that $n_{i} \neq-1$ for all $i=1,2, \ldots, r$. In the recursive formula in Theorem 5.2, we have the following properties for each $k=2,3, \ldots, r$ :
(1) If $n_{k}<-1$ and $n_{k-1} \geq 1$, then $\min \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)>\min \operatorname{deg} V_{k-2}(t)$ and $\min \operatorname{deg} \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)>\min \operatorname{deg} V_{k-2}(t)$.
(2) If $n_{k} \geq 1$ or $n_{k-1}<-1$, then $\min \operatorname{deg} V_{k-2}(t)>\min \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)$ and min $\operatorname{deg} \mathcal{A}_{n_{k}}(t) \lambda_{k}(t)>\min \operatorname{deg} \mathcal{B}_{n_{k}}(t) V_{k-1}(t)$.

Proof. Let $m_{i}=-n_{i}$ for all $i=1,2, \ldots, r$ and let $\tilde{V}_{k}(t)$ be the Jones polynomial of the 3-periodic link $\tilde{L}_{k}^{(3)}$ with rational quotient $\tilde{L}_{k}=\vec{C}\left[\left[m_{1}, m_{2}, \ldots, m_{k}\right]\right]$. Let $\tilde{\lambda}_{k}(t)$ be the Laurent polynomial recursively defined by

$$
\tilde{\lambda}_{1}(t)=-t^{-\frac{1}{2}}-t^{\frac{1}{2}}, \tilde{\lambda}_{k}(t)=t^{2 m_{k-1}}\left(\tilde{\lambda}_{k-1}(t)+\mathcal{A}_{2 m_{k-1}}(t) \tilde{V}_{k-2}(t)\right)
$$

By (25) and (26),
$\max \operatorname{deg} \mathcal{B}_{m_{k}}(t)=-\min \operatorname{deg} \mathcal{B}_{n_{k}}(t), \max \operatorname{deg} \mathcal{A}_{m_{k}}(t)=-\min \operatorname{deg} \mathcal{A}_{n_{k}}(t)$.
We observe that $\tilde{L}_{k}^{(3)}$ is the mirror image of $L_{k}^{(3)}$ and hence $\tilde{V}_{k}(t)=V_{k}\left(t^{-1}\right)$. Therefore
$\max \operatorname{deg} \tilde{V}_{k}(t)=-\min \operatorname{deg} V_{k}(t), \max \operatorname{deg} \tilde{\lambda}_{k}(t)=-\min \operatorname{deg} \lambda_{k}(t)$.
By Lemma 5.4,
(1) if $m_{k}>1$ and $m_{k-1} \leq-1$, then max $\operatorname{deg} \mathcal{B}_{m_{k}}(t) \tilde{V}_{k-1}(t)<\max \operatorname{deg} \tilde{V}_{k-2}(t)$ and max $\operatorname{deg} \mathcal{A}_{m_{k}}(t) \tilde{\lambda}_{k}(t)<\max \operatorname{deg} \tilde{V}_{k-2}(t)$,
(2) if $m_{k} \leq-1$ or $m_{k-1}>1$, then $\max \operatorname{deg} \tilde{V}_{k-2}(t)<\max \operatorname{deg} \mathcal{B}_{m_{k}}(t) \tilde{V}_{k-1}(t)$ and max $\operatorname{deg} \mathcal{A}_{m_{k}}(t) \tilde{\lambda}_{k}(t)<\max \operatorname{deg} \mathcal{B}_{m_{k}}(t) \tilde{V}_{k-1}(t)$.

This completes the proof.

Theorem 5.6. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $V_{k}(t)$ be the Jones polynomial of the 3-periodic link $L_{k}^{(3)}$ with rational quotient $L_{k}=\vec{C}\left[\left[n_{1}, n_{2}, \ldots\right.\right.$, $\left.n_{k}\right]$. Suppose that $n_{i} \neq \pm 1$ for all $i=1,2, \ldots, r$. Then

$$
\max \operatorname{deg} V_{k}(t)=(1-k)+\frac{3}{2} \sum_{i=1}^{k}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1}+\frac{1}{2} \sum_{j=1}^{k-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)
$$

and

$$
\min \operatorname{deg} V_{k}(t)=(k-1)+\frac{3}{2} \sum_{i=1}^{k}\left(n_{i}-\left|n_{i}\right|\right)+\epsilon_{1}-\frac{1}{2} \sum_{j=1}^{k-1}\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right) .
$$

Proof. In the proof of Lemma 5.4, we have

$$
\max \operatorname{deg} V_{1}(t)=\frac{3}{2}\left(\left|n_{1}\right|+n_{1}\right)+\epsilon_{1}
$$

If $n_{2}>1$ and $n_{1}<-1$, then by (1) in Lemma 5.4 we obtain

$$
\max \operatorname{deg} V_{2}(t)=3 n_{2}+\max \operatorname{deg} V_{0}(t)=\frac{3}{2}\left(n_{2}+\left|n_{2}\right|\right)
$$

If $n_{2}<-1$ or $n_{1}>1$, then by (2) in Lemma 5.4 we get

$$
\begin{aligned}
\max \operatorname{deg} V_{2}(t) & =3 n_{2}+\max \operatorname{deg} \mathcal{B}_{n_{2}}(t) V_{1}(t) \\
& =3 n_{2}+\left(-1+\frac{3}{2}\left(\left|n_{2}\right|-n_{2}\right)+\frac{3}{2}\left(\left|n_{1}\right|+n_{1}\right)+\epsilon_{1}\right) \\
& =-1+\frac{3}{2}\left(\left|n_{2}\right|+n_{2}\right)+\frac{3}{2}\left(\left|n_{1}\right|+n_{1}\right)+\epsilon_{1} .
\end{aligned}
$$

Therefore we have

$$
\max \operatorname{deg} V_{2}(t)=-1+\frac{3}{2} \sum_{i=1}^{2}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1}+\frac{1}{2}\left(1-\epsilon_{1}\right)\left(1+\epsilon_{2}\right)
$$

If $n_{k+1}>1$ and $n_{k}<-1$, then by (1) in Lemma 5.4 we get

$$
\begin{aligned}
\max \operatorname{deg} V_{k+1}(t)= & 3 n_{k+1}+\max \operatorname{deg} V_{k-1}(t) \\
= & 3 n_{k+1}+(2-k)+\frac{3}{2} \sum_{i=1}^{k-1}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1} \\
& +\frac{1}{2} \sum_{j=1}^{k-2}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) .
\end{aligned}
$$

If $n_{k+1}<-1$ or $n_{k}>1$, then by (2) in Lemma 5.4 we calculate

$$
\begin{aligned}
\max \operatorname{deg} V_{k+1}(t)= & 3 n_{k+1}+\max \operatorname{deg} \mathcal{B}_{n_{k+1}}(t) V_{k}(t) \\
= & -1+\frac{3}{2}\left(\left|n_{k+1}\right|+n_{k+1}\right)+(1-k) \\
& +\frac{3}{2} \sum_{i=1}^{k}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1}+\frac{1}{2} \sum_{j=1}^{k-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) .
\end{aligned}
$$

Therefore we have

$$
\max \operatorname{deg} V_{k+1}(t)=-k+\frac{3}{2} \sum_{i=1}^{k+1}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1}+\frac{1}{2} \sum_{j=1}^{k}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)
$$

By a similar argument, we also have

$$
\min \operatorname{deg} V_{k+1}(t)=k+\frac{3}{2} \sum_{i=1}^{k+1}\left(n_{i}-\left|n_{i}\right|\right)+\epsilon_{1}-\frac{1}{2} \sum_{j=1}^{k}\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right) .
$$

This completes the proof.
Theorem 5.7. For given nonzero integers $n_{1}, n_{2}, \ldots, n_{r}$, let $L^{(3)}$ be 3-periodic link with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \ldots, n_{r}\right]\right]$. If $\left|n_{i}\right| \geq 2$ for all $i=$ $1,2, \ldots, r$, then the span of the Jones polynomial $V_{L^{(3)}}(t)$ of $L^{(3)}$ is given by

$$
\operatorname{span} V_{L^{(3)}}(t)=3 \sum_{i=1}^{r}\left|n_{i}\right|-2 \kappa\left(n_{i} ; r\right) .
$$

Proof. From Theorem 5.6, we have

$$
\operatorname{span} V_{L^{(3)}}(t)=\max \operatorname{deg} V_{r}(t)-\min \operatorname{deg} V_{r}(t)
$$

$$
\begin{aligned}
= & (1-r)+\frac{3}{2} \sum_{i=1}^{r}\left(n_{i}+\left|n_{i}\right|\right)+\epsilon_{1}+\frac{1}{2} \sum_{j=1}^{r-1}\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right) \\
& -(r-1)-\frac{3}{2} \sum_{i=1}^{r}\left(n_{i}-\left|n_{i}\right|\right)-\epsilon_{1}+\frac{1}{2} \sum_{j=1}^{r-1}\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right) \\
= & 3 \sum_{i=1}^{r}\left|n_{i}\right|-2 \kappa\left(n_{i} ; r\right)
\end{aligned}
$$

because

$$
\kappa\left(n_{i} ; r\right)=r-1-\frac{1}{4} \sum_{j=1}^{r-1}\left[\left(1-\epsilon_{j}\right)\left(1+\epsilon_{j+1}\right)+\left(1+\epsilon_{j}\right)\left(1-\epsilon_{j+1}\right)\right]
$$

as we have seen in the proof of Theorem 4.5. This completes the proof.

Acknowledgments. The authors would like to thank the referee for many valuable comments.

## References

[1] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, 1970 Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329358 Pergamon, Oxford.
[2] H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, On the character variety of periodic knots and links, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 3, 477-490.
[3] H. J. Jang, S. Y. Lee, and M. Seo, Casson knot invariants of periodic knots with rational quotients, J. Knot Theory Ramifications 16 (2007), no. 4, 439-460.
[4] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103-111.
[5] T. Kanenobu, Examples on polynomial invariants of knots and links. II, Osaka J. Math. 26 (1989), no. 3, 465-482.
[6] , Jones and $Q$ polynomials for 2-bridge knots and links, Proc. Amer. Math. Soc. 110 (1990), no. 3, 835-841.
[7] T. Kanenobu and Y. Miyazawa, 2-bridge link projections, Kobe J. Math. 9 (1992), no. 2, 171-182.
[8] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407.
[9] S. Y. Lee, M.-S. Park, and M. Seo, The Seifert matrices of periodic links with rational quotients, Kyungpook Math. J. 47 (2007), no. 2, 295-309.
[10] S. Y. Lee and M. Seo, Recurrence formulas for the Alexander polynomials of 2-bridge links and their covering links, J. Knot Theory Ramifications 15 (2006), no. 2, 179-203.
[11] , Casson knot invariants of periodic knot with rational quotients II, J. Knot Theory Ramifications 17 (2008), no. 8, 905-923.
[12] _, The genus of periodic links with rational quotients, to appear in Bull. Austral. Math. Soc. (2009).
[13] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107-141.
[14] B. Lu and J. K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math. GT/0606114.
[15] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194.
[16] , Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319-329.
[17] _ , Knot Theory and its Applications, Translated from the 1993 Japanese original by Bohdan Kurpita. Birkh'äuser Boston, Inc., Boston, MA, 1996.
[18] S. Nakabo, Formulas on the HOMFLY and Jones polynomials of 2-bridge knots and links, Kobe J. Math. 17 (2000), no. 2, 131-144.
[19] , Explicit description of the HOMFLY polynomials for 2-bridge knots and links, J. Knot Theory Ramifications 11 (2002), no. 4, 565-574.
[20] D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.
[21] H. Schubert, Knoten mit zwei Brücken, Math Z. 65 (1956), 133-170.
[22] A. Stoimenow, Rational knots and a theorem of Kanenobu, Experiment. Math. 9 (2000), no. 3, 473-478.
[23] M. B. Thistlethwaite, Kauffman's polynomial and alternating links, Topology 27 (1988), no. 3, 311-318.

Eunju Lee
Department of Mathematics
Graduate School of Natural Sciences
Pusan National University
Pusan 609-735, Korea
Sang Youl Lee
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail address: sangyoul@pusan.ac.kr
Myoungsoo Seo
Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
E-mail address: myseo@knu.ac.kr


[^0]:    Received November 8, 2007.
    2000 Mathematics Subject Classification. Primary 57M25.
    Key words and phrases. Jones polynomial, 2-bridge knot, span, periodic link with rational quotient.

    This work was supported for two years by Pusan National University Research Grant.

