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DYNAMICS OF COUNTING
JUNE GI KIM AND YOUNG SUN SONG

ABSTRACT. In this paper we are going to study the dynamics of
counting on the set & of functions from a finite subset of N =
{1,2,---} into N. We have shown that every point f € S is ei-
ther an eventually fixed point or an eventually periodic point of
period 2 or 3.

1. Notation and Object

We denote by [1,n] the set of integers {1,2,--- ,n}. We represent a
function f: [1,n] — N by

f= ( 1 2 n )
f 7@ - fn)
If A is a finite subset of N, we denote by #(A) the number of ele-
ments of the set A. Let & be the set of all functions f : A — N from

a finite nonempty subset of N into N. We define a counting function
C:S8 — § in the following way:

(1) dom C(f) = domf Uimf.
(2) For each k € dom C(f),
1, if k & imf,
C(f)(k) = #(f7H(K)), if k € imf \ f7H(k),
1+ #(f71(k)), if k € imf N f~1 (k).

Question. Given f € S, let fo = f, fn = C(fn-1),n > 1. What is
the property of the orbit of f

{anfl!fZ:"'}'
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2. Main Result

THEOREM 2.1. For each f : [1,n] — [1,n], one of the following
holds true:

(1) n < 4: f is an eventually fixed point.
(2) B=5;
(2-a) If f is injective or constant, then f is an eventually peri-
odic point of period 2.
(2-b) Otherwise f is an eventually fixed point.
(3) n=6:
(3-a) If f is injective or constant, then f is an eventually peri-
odic point of period 3.
(3-b) Otherwise f is an eventually fixed point of period 2.
() n="
(4-a) If#(f (1)) =n—4 and #(f~(a)) = 2 for some a # 1,
then f is an eventually fixed point.
(4-b) If #(f~*(1)) = 4,5, then f is an eventually fixed point.
(4-¢) Otherwise f is an eventually periodic point of period 3.
(5) n>8:
(5-a) If#(f (1)) = n—4 and #(f~(a)) = 2 for some a # 1,
then f is an eventually fixed point.
(5-b) Otherwise f is an eventually periodic point of period 2.

LEMMA 2.1. Ifn > 7, then for each f : [1,n] — [1,n] we have
#(f (1) >n—4

for some p.

Proof. 1If suffices to consider the case #(f‘l(l)) =n—k,4<k <n.
Thus there are £ points at which the values of f are different form 1. If
these k values are all different, we have #( fo 1(1)) = n—3. If f has the

same value more than points of these k points, than #( 5 1(1)) =n—2.
If f has the same value at exactly two points of these k points, then

#(f21(1) >n—4 O

LEMMA 2.2. f:[1,n] = [1,n] and #(f~'(1)) =n - 1.
(1) If n =5, then f is an eventually fixed point.
(2) Ifn > 6, then f is an eventually periodic point of period 2.
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Proof. By hypotheses there exists exactly one a at which f(a) # 1.

Therefore
5 1 23 4 - n—-1 n
Ex %] B 3 e d 2 '

If n = 5, we calculate to see that

(123 45 B
f“‘(:s 2 3 1 1) and f5 = fa.

If n > 6, we have

fs = 1 2 3 4 5 n—3 n—2 n—1 n

" \n-3 4111 1 2 I i
2 1 2 3 4 5 n—3 n—2 n—-1 n
" \n-2 2121 2 1 1 1)
fr=1TIs.

This means that f is an eventually periodic point of period 2. O

COROLLARY 2.1. If f : [1,n] — [1,n], n > 5, is injective or con-
stant, then f is an eventually periodic point of period 2.

Proof. If f is injective, then f is constant. Thus it suffices to con-
sider the case that f is constant. But if f is constant, then f5 :
[I,m+ 1] — [1,n + 1] and #(fz_l(l)) =n=mn+1—-1. Hence f
is an eventually periodic point of period 2. O

Proof of Theorem 2.1. By Lemma 2.1, it suffices to consider the
following cases:

#(f (1) =n-1,
#(f711) =n-2,
#(f71(1)) =n-3,

(4) #(f71(1)) =n—4
We have treated the case #(f (1)) = n — 1 in Lemma 2.2. The
other cases by the same method. O
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THEOREM 2.2. Foreach f € S, f is either an eventually fixed point
or an eventually periodic point of period 2 or 3.

Proof. We first choose n > 5 so that dom f C [1,n]. Then

o0

U im f C [1,’fl+1].
k=1

By pigeon hole principle we have f, = f, for some p > ¢. Therefore f
is an eventually fixed point or an eventually periodic point. Observe
that if a,b € dom f and there is no integer £ € dom f such that
a < k < b, then the orbit of f, f: (dom f\ {b}) U{a+1} » N and

. f(k),ifk#a+1,
f(k) = .

fb),ifk=a+1
, has the same property of that of f. Therefore we may assume that

dom f = [1,n] for some n > 4. Now the conclusion follows from
Theorem 2.1. O

3. Examples
EXAMPLE 3.1. Let f:[1,n] — [1:n] is a fixed point. Then

>k -y = 2D,
k=2

Proof. By the definition of C(f) f(k) is the number of the k’s in the
upper and lower rows of the representations of f. Thus

n

Y kf(k) =" (k+ f(k)).

k=1
O
From Theorem 2.1 we observe that there are infinite number of

eventually fixed point. Using the Lemma 3.1, we can find all the fixed
points for n < 10.
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EXAMPLE 3.2. The following are the only fixed points f : [1,n] —
[1,n] when n < 10.

Proof. If f is a fixed point, we have

Zn: )z n(n+ 1)
k=2 2

where z; = f(k). Thus, if we let yp =z — 1,k =2,3, - ,n, we have

y2+2y3+---+ (n — 1y, = n.

This is a linear Diophantine equation and we find that
Y2 = n — 2vy + v3,
Ys = vy — 2u3 + Vg,

?
Un—2 = Un—3 — 2Un_2 + Un—1,
Yn—1 = Un—2 — 2Un—11

Yn = Un-—1,

where wvo,v3,--- ,v,_1 are any integers. However we are interested
in the nonnegative integer solutions. A little more calculations show
that:

(1) If n < 3, then there is no fixed point.
(2) If n = 4, there are two fixed points

1 2 3 4 1 2 3 4
2 3 2 1)° 3 1 3 1)°

(3) If n = 5, there is only one fixed point
1 2 3 4 5
3 2 4 1 1J

(4) If n = 6, there is no fixed point.
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(5) if n =7, there is only one fixed point.
1 2 3 4 5 6 7
4 838 2 2 I 1 1§°
(6) If n =8, there is only one fixed point.
1 2 3 4 5 6 7 8
5 3 21 2 11 1)°
(7) If n =9, there is only one fixed point.

1 2 3 45 6 7 8 9
6 3 2 11 2 1 1 1/

(8) If n = 10, there is only one fixed point.

1 23 45 6 7 8 9 10
73 2111211 1

O

However f: [1,n] — [1,n] can be a periodic point of period 3 when
n==6orT.

EXAMPLE 3.3. The only periodic points of period 3 are the follow-

ing:
1 2 3 45 6 7
1 56 2 21 2 1)°

Proof. If f : [1,n] — [1,n] is a periodic point of period 3, we have
n =6 or n =7 by Theorem 2.1. Furthermore

Y kAR =Y (k+ f(k)),
k=1 k=1
D kfa(k) =D (k+ fi(k)),
k=1 k=1
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Therefore

S (k= 1)(£(8) + (k) + fo(R)) = Sn(n+1).
k=2

By solving this Diophantine equations we obtain two points of period
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