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ABSTRACT. In the present paper we investigate the existence of almost periodic processes
of ecological systems which are presented with nonautonomous N-dimensional impulsive
Lotka Volterra competitive systems with dispersions and fixed moments of impulsive per-
turbations. By using the techniques of piecewise continuous Lyapunov’s functions new
sufficient conditions for the global exponential stability of the unique almost periodic so-
lutions of these systems are given.

1. Introduction

Impulsive differential equations may be used for mathematical simulation of
processes and phenomena, which are subject to short-term perturbations during
their evolution. The duration of the perturbations is negligible in comparison with
the duration of the process considered, therefore it can be considered instanta-
neous. Most of the investigations related to impulsive systems are focused on the
basic theory of impulsive equations, [8], [11], [13] and seldom produce applications
on ecological systems. On the other hand nonautonomous N-dimensional Lotka
Volterra competitive systems with dispersions without impulses have attracted the
interest of many researchers in the past twenty years, [5]-[7], [12], [18], [21]. Some
qualitative characteristics of the solutions of such systems have been investigated by
many authors. Stability, periodicity, persistence, permanence are studied by Ahmad
and Lazer [1], [2], Ahmad and Stamova [3], Lisena [9], [10], Tineo [19]. There are
some perturbations in the real world such as fires and floods, that are not suitable
to be considered continually. Competitive system with such sudden perturbations
involving impulsive differential equations for mathematical simulations.

In this paper we shall investigate the existence of almost periodic solutions of
nonautonomous N-dimensional impulsive Lotka Volterra competitive system with
dispersions and fixed moments of impulsive perturbations. The main results related
to the study of the existence of almost periodic solutions for impulsive dynamical
systems are studied in [13], [14]-[17]. The purpose of this paper is to derive “easily
verifiable” sufficient conditions for the existence of almost periodic solutions for a
class of nonautonomous N-dimensional impulsive Lotka Volterra competitive sys-
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tem with dispersions and fixed moments of impulsive perturbations. The paper is
organized as follows. In Section 2 we give some preliminaries and main definitions.
In Section 3 we investigate the existence of almost periodic solutions. By means of
piecewise continuous auxiliary functions which are analogues of the classical Lya-
punov’s functions sufficient conditions are obtained.

2. Preliminaries and basic results

Let RY by the N-dimensional Euclidean space with norm [|u|| = Zi\il s,
Rt =100,00), S, ={ueRY: ||u]| <v}, v>0,andlet: B={{r}: v €R, 7 <
Trk+1, k € Z} is the set of all sequences {7} which are unbounded and strictly
increasing with distance p({Tlgl)},{TIEQ)}). PC = PCIR,RN] = {o: R = RN, ¢
is a piecewise continuous function with points of discontinuity of the first kind at
Tr, {Te} € B at which ¢(7, — 0) and (7 + 0) exist, and ¢(7 — 0) = ©(7%)}.
PCHR,R] = {p : R — R, ¢ is continuously differentiable everywhere with ex-
cept of the points 74, {7} € B at which ¢(r, — 0) and ¢(7, + 0) exist, and
¢(mh —0) = ¢(7h) }-

We will consider the following nonautonomous N-dimensional impulsive Lotka
Volterra competitive system with dispersion and fixed moments of impulsive per-
turbations

() = wi(t) [ri(t) — ai(ui(t) — Y as;(t)u; (b))

j=1,j#i
N
D big (s (1) — wilt)), £ £ 7,

ui (i +0) = wi(7%) + drui(), k € Z,

wheret e R, 1 =1,2,--- ,N, N > 2 and:
(a) The functions r;(t), a;(t) € CR,R], 1 < i < N, and a;;(t) € CR,R], i #
Jy bij(t) € CR, R, 1 <4, j < N;
(b) The constants d, € R, {7} € B, k€ Z.
Let tg € R, uip € . Denote by u(t) = u(t; to, uo), u(t) = col(ui(t), uz(t), - ,un(t)),
ug = col(u1g, u20, - , Unp) the solution of (1) with the initial condition

(2) u(to + O, to, Uo) = Up.

The solution u(t) = wu(t; to, ugp) of problem (1), (2) is a piecewise continuous function
with points of discontinuity of the first kind at the points 7%, k € Z. At these points
the solutions u(t) are continuous from the left, that is, at the moments of impulse
effects 7, s the following relations are valid:

ui(’Tk — O) = ’U,i(’Tk), ui(’Tk -I-O) = ’U,Z(Tk) +dkui(7'k), ke Z.

We will use piecewise continuous auxiliary functions which are analogues of the
classical Lyapunov’s functions and consider the following sets:
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Gr = (The1, ) x RN, k€ Z; G=Up2__ Gi;
Vo = {V € C[G,R"], there exist the limits V(7 — 0,uo), V(7% + 0,up), V(7% —
0,up) = V (7%, up), ug € Sy,, V is locally Lipschitz continuous for v € S, }.

Let V. € Vy. For any (t,u) € [rg—1,7k) X S, the right-hand derivative
DTV (t,u(t)) along the solution wu(t;tg, ug) of (1) is defined by

DYV (t,u(t)) = Jim, info HV (t+ 6,u(t +6)) — V(t,u(t))}.
Given a nonnegative continuous function g(¢) which is defined on %, we set
g =supg(t), g1 = inf g(t).

Remark 1. The problems of existence, uniqueness, and continuability of the so-
lutions of impulsive differential equations have been investigated by many authors.
Sufficient conditions for the existence of the solutions of such systems are given in
(8], [13].

Since the solutions of (1) are piecewise continuous functions we adopt the fol-
lowing definitions for almost periodicity. Let for T,P € B, s(TUP) : B— Bisa
map such that the set s(T"U P) forms a strictly increasing sequence and if D C
then 0.(D) = {t+¢, t € D}, F.(D) = N{6-(D), € > 0}. By ¢ = (p(t),T) we
denote the element from the space PC' x B, and for every sequence of real numbers
{an}, n=1,2,---, with 0, ¢ denote the sets {p(t+ay,), T —a,} C PC x B, where
T—ap,={mx—an, k€Z}, n=1,2,---.

Definition 1([13]). The set of sequences {7/}, 7/ = 74 — 7, k€ Z, j € Z is
said to be uniformly almost periodic with respect to k € Z if for any € > 0 there
exists a relatively dense set in R of e-almost periods common for all the sequences

{}.

Lemma 1([13]). The set of sequences {T]z} is uniformly almost periodic, if and
only if from each infinite sequences of shifts {y—an}, k€ Z,n=1,2,-- , a, €N
we can choose a subsequence, convergent in B.

Definition 2. The sequence {¢,}, ¢n = (pn(t),Tn) € PC X B is uniformly con-
vergent to ¢, ¢ = (o(t),T) € PC x B if and only if for any € > 0 there exists
ng > 0 such that

p(T,Tn) <&, |len(t) —p(t)]| <e
hold uniformly for n > ng and t € R\ F.(s(T, UT)).

Definition 3. The function ¢ € PC is said to be almost periodic piecewise con-
tinuous function with points of discontinuity of the first kind from the set T if for
every sequence of real numbers {o/,, } there exists a subsequence {ay,}, an, = o,
such that 6,,, ¢ is compact in PC x B.

Introduce the following assumptions:
H1. The functions 7;(t), a;(t), 1 <i < N, a;;(t), i # j, b;i;(t), 1 <i,j <N, are
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almost periodic, nonnegative, continuous and r;;, > 0, iy < 00, a;, > 0, a;p <
o0, aijLZO, Qigm < OQ, ’L#], bijLZO, bijM<oofor1§i,j§N.

H2. The sequence {d}}, is almost periodic and —1 < d; <0, k € Z.

H3. The set of sequences {7}, k € Z, j € Z is uniformly almost periodic and
inf{th41 — 1, k€ Z} > 0.

Let the assumptions H1-H3 hold and let {a,,’} be an arbitrary sequence of
real numbers. Then there exists a subsequence {a,}, an = .’ such that the
sequences {r;(t + a,)}, {a:i(t + a,)} and {a;; (¢t + o)}, @ # 4, {bij(t + an)} are
convergent uniformly on 1 <4,5 < N, to the functions {r&(t)}, {af(t)},

{ag;(t)}, {bg(t)} and the sequences {7y~ }, k € Z are convergent to the sequence
{7} uniformly with respect to k € Z as n — oo. By {k,,} we denote the sequence
of integers such that the subsequence {7y, } is convergent to the sequence {7z
uniformly with respect to k € Z as i — oco.

From H2 it follows that there exists a subsequence of the sequence {k,,} such that
the sequences {dkni} are convergent uniformly to the limits denoted by dj .

Then for every sequence {«/,} the system (1) is moving to the system

N

wi(t) = wi(®)[ri* () — a (tua(t) — | > af(t)uy(t)]

N Jj=1,j#i
308 () (g (1) — wilt)), t# T,
j=1

wi(r2 4 0) = ug(r) + dus(r)), k € Z.

Remark 2. In many papers the limiting systems (3) are called hull of the system
(1). These systems could be used effectively in the translation technique and in the
stability analysis of population models.

In the proof of the main results we shall use the following definitions and lemmas
for the system (1). Let ug = col(u1g, u20, -+ ,uno) and vg = col(v10, 20, ,UNO), Uio €
§R, v;0 € R and
u(t) = col(uy (t), uz(t), -+ ,un(t)), v(t) = col(vi(t),va(t), -, un(t))
are two solutions of (1) with initial conditions
u(to + 0; to,Uo) = ug, U(to + 05 ¢, Uo) = V9.
Definition 4([4]). The system (1) is said to be globally exponentially stable if for

all § > 0, there exist v = v(d) > 0 and ¢ = ¢(§) > 0 such that if ug, vy € S,, with
[|lup — vo|| < 4, then for all t > tg,

[|u(t; to, uo) — v(t;to, vo)|| < ¥||luo — vol| exp[—c(t — to)].
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Definition 5. Suppose u(t) = (ui(t), u2(t), -+ ,u,(t)) is any one solution of system
(1) then wu(t) is said to be a strictly positive solution, if for 1 <i < N,

0 < inf u;(t) < i(t .
<gg%uz()_§g£ul()<oo

Lemma 2. Let the following conditions hold:
1. The conditions H1-H3 are satisfied.
2. There exist functions P;, Q; € PC*[R,R] such that

Pi(to +0) < ui(to +0) < Qi(to +0),
where tg € R, i=1,2,--- ,N. Then we have
(4) Pi(t) < ui(t) < Qi(t)

forallt >tgandi=1,2,--- ,N.
Proof. First we will proof that

(5) ui(t) < Qi(t)
forallt > tgpand i =1,2,--- , N, where Q;(t) is the maximal solution of the logistic
system

¢i(t) = qi(t) [ri(t) — a;(t)q;(t)], t # Tk,
(6) ¢i(to +0) = gi0 > 0,
¢i(me +0) = ¢; (1) + dMqi(mk), k € Z,

where d™ = sup{dy}. The maximal solution Q;(t) = Qi(tto,q), G =

kez
col(q10, q20, "+, qno) of (6) is defined by the equality
QY (t:t0,Q7 +0), to <t <71,
QlIt;m,Qf +0), 1 <t <y,
Qi(t;to, qo) =

Qi (t; 7k, QF +0), T <t < T,

where Q¥ (t; 7, QF + 0) is the solution of the equation without impulses
Gi(t) = qi(t) [ri(t) — ai(t)qi(t)],

in the interval (7, 7,41], k= 0,1,2,--- , for which Q¥ +0 = (1 4+ d™)Q¥ (; T_1,
Q¥ 40), k=1,2---,1<i< N and Q¥ +0 = go. By [20] , it follows for (1)
that

(7) i(t) < uilt) [ri(t) — ai(t)ui(t))], t # 7.
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Now, let t € (to,71]. If 0 < w0 < Q;(to +0), then elementary differential inequality
[8] yields that

ui(t) < Qi(t)

for all ¢ € (to, 7], i.e., the inequality (5) is valid for t € (tg,71]. Suppose that (5)
is satisfied for ¢t € (74—1,7%]. Then from H3 and the fact that (5) is satisfied for
t = 7, we obtain

ui(te +0) = wi(mg) + drpwi (1) < wi(me) + dMui(Tk)
Qi(mi) + d"Qi(mk) = Qi(m +0).

IN

We apply again the comparison result (7) in the interval (7, 7x+1] and obtain

u;(tito, uo) < QF (67, QF +0) = Qi(t:to, q0)

e., the inequality (5) is valid for (7%, 7k4+1]. The proof of (5) is completed by
induction.
Further, by analogous arguments, using [20] we obtain from (1) and (7) that

N

(t) = wi(t) [ra(t) - a(ui() = Y ay(t) sup Qi(t)]

j=1a#i
N

_szj Susz ) t#’rka

wi (T + O) 2 uZ(Tk) + gFui(m), k€ Z,

(8) u(t) > Py(t)

forallt € Rand ¢ =1,2,--- , N, where P;(t) is the minimal solution of the logistic
system

t=1,---,N, N > 2, and hence u;, > P;(to + 0) implies that

pi(t) = pi(t) [ri (t) — a; (t)pi( Z a;;(t sup Qi )}

J#l
(9) - Z bzy supQ ) t 7£ Tk,

pi(to + 0) on >0,
pi(Ti +0) = pi(7x) + dEpi(mi), k € Z,

i=1,---,N and d* = inig{dk} for 1 < i < N. Thus, the proof follows from and
€
(5) and (9). O

Lemma 3. Let the following conditions hold:
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1. The conditions H1-H3 are satisfied.

2. Let u(t) = col(ui(t),ua(t), - - ,un(t)) is a solution of (1) such that u;(to+0) > 0,
1<i<N.

Then :

1. wi(t)>0,1<i< N, teR

2. Fort € R and 1 <i < N there exist a constants A >0, B > 0, such that

Proof of assertion 1. Under hypotheses H1-H3, consider the nonimulsive Lotka-
Volterra system

N
3i(t) = w0) {ra()) = Ai(Bma0) = D0 Ay(y;(0)
(10) J=Ll.g#i
N
+ZBij[yj(t) —y:(D)], t # 7k, t > to,
where

A) = a() T (+d.

o<t <t

Ag(t) = ai;(t) J] (0 +dw),
O<Tp <t

Bi(t) = bi(t) J[ (+dw).
O0<Tp<t

If y;(t) is solution of (7) then u; = y; H (1 + dy) is solution of (1) 1 <4 < N.
0< <t
In fact, for t # 713, it follows

N N

(11) i (t) = ui(t) |ri(t) — ai(Oui(t) = Y ai(t = byt
Jj=Lj#i j=1

= 9 H (1+dy) H (l—i—dk)[n(t —a;(t H (1+ dy)
0< T <t 0< T <t 0<7'k<t

N
=Y ay®y [I @+do] =Y el T @+d)—u [] a+d]
O<m <t 7j=1 O<T<t O<T<t
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N
=TT Qe+ do i) @[t - w0 — Y Ay@y(0)]

0< <t j=1,j#i
N

=3 Bulyi(t) - wi0)]] =0.
j=1

For t = 7, we have

ui(my, +0) = lim. II Q+dowt)= [ O+ di)vi(m),

=T <<t 0< T <t
and
wi(m) = [ (04 de)yi(mi)-
0<7, <t
Thus, for every k € Z
(12) wi(ne +0) = [ @+ di)yi(m).
0< <t

From (11) and (12) it follows that w;(¢) is the solution of (1).

The proof that if u; = y; H (14 dy) is solution of (1) it follows that y;(t), 1 <
0<7 <t

i < N is solution of (10) is analogously. From [20] it follows that for the system

without impulses (10) exists positive solution on ¢ € R. Then from (11) and (12) it

follows that u;(¢t) > 0,1 <i< N, t € R. O

Proof of assertion 2. From [20] under the conditions of Lemma 3 for the solutions
of (6) and (9) it is valid that

a; < Pi(t), Qi(t) < i,
where a; > 0, 0 < 3; < oo for all t # 7, 1 <i < N and then
;i <u(t) < B
Also since the solution w;(t) is left continues at ¢t = 75, we have for t = 71 that
a; < ui(m1) < B
On the other hand
(I+di)a; <wui(m +0) < (1+dg)Bi <G

By analogous arguments for the ¢t € (7,1, 7%] it follows

0<

=

(1 +di)oy < ui(me +0) < B

=1
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Then for all ¢ € ® we have

A< Ujg (t) S B,
where
A = min{o; 1_[(1—|—dk)}7 B = min ;.
’ kez !
The proof of Lemma 3 is complete. O

3. Main results

For the proof of the main results we consider systems (3) and then discuss the
almost periodic solutions of the system (1).

Lemma 4. Let the following conditions hold:

1. The conditions H1-H3 are satisfied.

2. {am'} be an arbitrary sequence of real numbers.

3. For the systems (3) there exist strictly positive solutions.

Then the system (1) has a unique strictly positive almost periodic solution.

Proof. For simplification, we write (1) in the form

ﬂ:f(tvu)ﬂ t # 7k,
(13) { u(tg +0) = u(Tk)k—l— dru(Ty), k € Z.

Let ¢(t) be a strictly positive solution of (13) and let the sequences of real numbers
o and (' are such that for their subsequences a C o/, § C ', we have 0,45 f(t,u) =
0.093f(t,u). Then On4p50(t), 0.030(t) exist uniformly on the compact set R x B
and are solutions of the following equation

{ W= fori(tu), t £ 10t
u(ti +0) = u(r) + dsPu(my), ke Z.

Therefore, 8,480(t) = 0.03¢(t), and thus according to Lemma 2, [16], it follows
that ¢(t) is an almost periodic solution of system (13). The proof is complete. [

Theorem 1. Let the following conditions hold:
1. The conditions H1-H3 are satisfied.
2. There exist nonnegative almost periodic functions §;(t), 1 <1< N such that

N
(14) wl®) = Y aalt) — 5 Sobalt) = 6(0), 1 £,
i=1,i£l i=1

forteR, A>0, ke Z. Then:
1. For the system (1) there exists a unique strictly positive almost periodic solution.
2. If there exists a constant ¢ > 0 such that

/t 5(t)ds = et — to),
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where §(t) = min(d1(t), d2(t), - ,dn(t)), then the almost periodic solution is glob-
ally exponentially stable.

Proof. From construction of the system (3) it follows that there exists a time se-
quence {o,}, 0, < opt1 and o, — 0o for n — oo such that

ri(t + o) = ri(t), ai(t+on) — ai(t), ai;(t+o0n) — af;(t),

by (t +on) — b7 (1), n — o0

uniformly on ¢t € R, t # 74, and there exists a subsequence {k,} of {n} k, —
00, n — oo such that
Tkn - Tko’ dkn - dz

Let u(t) is positive solution of the system (3). From Lemma 3 it follows that there
exist two positive constants A and B, such that

A< tlim infu;(t) < tlim supu;(t) < B,i=1,2,--- /N

and consequently

(15) 0 < inf u;(t) <supu,(t) < oo, i=1,2,---,N.
teR teR
Let u,(t) = u(t + o,,) and for all t > —o,, n=1,2,---, we obtain

N
i) = wi(B)[rf (¢ + o) —af (t+on)uilt) = D af(t +on)uy(t)]
j=1j#i

+Zb" t+on)(ui(t) —ui(t), t # 1, —0
Aui(Tkn) fdk,nuz('rkn) k €z

(16)

From H1- H3 and (14) it follows that there exists a positive constant K such

{un( )} n < r is uniformly bounded and contionuous for ¢t € [—oy,,00) \ {7%, }.
Then from Ascoli-Arzela Theorem it follows that there exists subsequence {o,, }
such that the sequence u,,(t) is convergent uniformly on any compact set in R for
m — o0.

Set

| < K for n = 1,2,--- and for any whole nomber r > 0 sequence

Hm wn, () =u’(t) = (ui(t),us(t), -, un(t)).

m—0o0

Lemma 3 implies that

(17) 0< inf wuf(t)< sup wi(t)<oo, i=1,2,---,N.
t€[0,00) t€[0,00)
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From (16) and H1-H3 it follows that u?(¢) is a solution of the system (3) and
consequently for every system in the form (3) there exists at least one strictly pos-
itive solution. Now suppose that the system (3) has two arbitrary strictly positive
solutions

u” = (u(17<t)7ug(t)’ T 7u(]7\/(t))7 v = (U?(t)vvg(t),' e avj(if(t))-

Consider the Lyapunov function

Vo (t,u’(t),v7(t)) = Z llnzzég |, teR.
i=1 g
Then for t € R, t # 77 we have that
N ., 7
DV (@), 070) = Y nur (1) -7 (1)

N N
< Y {-aoim -+ Y ag®lg ) v @)
i=1 j=1,j#1¢
1 N
+— D b7 O)ug (1) — o7 ()]}
j=1
Thus in view of hypothesis (14) we obtain
(18) DYV (t,u? (1), 07 () < =87 (t)m (1), t € R, t # 7,
where 67 (t + 0,,) — 67 (), n — o0, i =1,2,--- ,N,
67 (t) = min(8Y (), 65 (t), - - - , 6% (¢) Z|u — 07

On the other hand for t = 77 we have

o( 0 o( 0 Th +O
(19) 1% (Tk +O7U (Tk: +O) Tk +0 Z‘l T: +0 |

al SYu? (79
= 3 R = Vo )7 D))

From (18) and (19) it follows
DYV (t,u’(t),v7(t)) <0, t € R, t # 77,

and
V(g +0,u (17 +0),07 (7 +0)) = VI (77, u (1), v7 (7)) = 0,
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and hence
Ve (t,u?(t),v7(t) < V7(to, u (to), v’ (to))

for all t > tg, tg € R. From the above inequality, (18) and (19) we get
t
/ 57 (5)m® (s)ds < V (ko) — Vo (£), t> to.
to

Therefore,
(o)
[ i) = v7o)lds <00, i= 1,200,
to
and uf (t) —v?(t) — 0ast — oco. Let p7 = tingg{uf,vf, i=1,2,---,N}. From the
€
definition of V7(t) we have

N
VOt ut(),07() = Y [Inuf — Invf]

=1
N
1
< T,Z\U?—”ﬂ
-

Hence V(t) — 0, t — oo. We have that V7(t) is nonincreasing nonnegative
function on R and from (19) we obtain that

(20) Ve@t) =0, te R

From (20) it follows that uf = v for allt € R and ¢ =1,2,--- , N. Therefore for an
arbitrary sequence of real numbers {a,,’} the system (3) has a unique strictly pos-
itive solution. From Lemma 4 analogously it follows that system (1) has an unique
strictly positive almost periodic solution u(t). Now consider again the Lyapunov
function

ui(t)
v;(t)

where v(t) = (v1(t),v2(t), -+ ,un(t)) is an arbitrary solution of (1) with initial
condition v(tg 4+ 0) = vp.
By Mean Value Theorem it follows that for any closed interval contained in ¢ €
(Tk—1,7Tk], k € Z there exist positive numbers r and R such that for 1 < i < N,
r < wu;(t), v;(t) < R and

1

(21) g uit) = vi(t)] < Jlnui(t) — nvi(t)] < %lui(t) — vi(t)]-

Hence we obtain

N
V()= V(tult),v(t) =Y lin—5],
=1

N
1
(22) V(to + 0,u0,v0) = Y _ |Inu;(to) — Inw;(to)| < ~[Juo = vol .
=1
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On the other hand
(23) DTV (t,u(t),v(t)) < —=d(t)m(t) < —6(t)rV(t, ult), v(t)),

where t € R, t # 7, and

N
m(t) = Z lu; — vs|, 8(t) = min(d1(¢), 02(t), -, on(1)).
i=1

Forte R, t =74

N
(24) V(7 + 0,u(r +0),v(r +0)) = > |In

=1

ui (7 + 0) |
Ui(Tk + 0)

N

=3l v ut) o)
i=1 o

From (21), (22) and (23) it follows

¢
(25) V(t,u(t), v(t)) <V (to + 0,up, v0) exp { / 5<s>ds} .
to

Therefore, from (21), (25) and (23) we deduce the inequality

N

D fus(t) = 0] < o = wolle ),

r
i=1

t > tg. This shows that the unique almost periodic solution w(t) of the system (1)
is globally exponentially stable. The proof of Theorem 1 is complete. O
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