• Title/Summary/Keyword: ${\sigma} _p$

Search Result 621, Processing Time 0.029 seconds

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

  • Seo, Keomkyo
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.195-200
    • /
    • 2010
  • Let C be a closed convex set in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$. Assume that ${\Sigma}$ is an n-dimensional compact minimal submanifold outside C such that ${\Sigma}$ is orthogonal to ${\partial}C$ along ${\partial}{\Sigma}{\cap}{\partial}C$ and ${\partial}{\Sigma}$ lies on a geodesic sphere centered at a fixed point $p{\in}{\partial}{\Sigma}{\cap}{\partial}C$ and that r is the distance in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$ from p. We make use of a modified volume $M_p({\Sigma})$ of ${\Sigma}$ and obtain a sharp relative isoperimetric inequality $$\frac{1}{2}n^n{\omega}_nM_p({\Sigma})^{n-1}{\leq}Vol({\partial}{\Sigma}{\sim}{\partial}C)^n$$, where ${\omega}_n$ is the volume of a unit ball in ${\mathbb{R}}^n$ Equality holds if and only if ${\Sigma}$ is a totally geodesic half ball centered at p.

Time and Space Efficient Search with Suffix Arrays (접미사 배열을 이용한 시간과 공간 효율적인 검색)

  • Choi, Yong-Wook;Sim, Jeong-Seop;Park, Kun-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.260-267
    • /
    • 2005
  • To search efficiently a text T of length n for a pattern P over an alphabet 5, suffix trees and suffix arrays are widely used. In case of a large text, suffix arrays are preferred to suffix trees because suffix ways take less space than suffix trees. Recently, O(${\mid}P{\mid}{\codt}{\mid}{\Sigma}{\mid}$-time and O(${\mid}P{\mid}P{\cdot}log{\mid}{\Sigma}{\mid}$)-time search algorithms in suffix ways were developed. In this paper we present time and space efficient search algorithms in suffix arrays. One algorithm runs in O(${\mid}P{\mid}$) time using O($n{\cdot}{\mid}{\Sigma}{\mid}$)-bits space, and the other runs in O($n{\cdot}{\mid}{\Sigma}{\mid}$ time using O($nlog{\mid}{\Sigma}{\mid}+{\mid}{\Sigma}{\mid}{\cdot}$nlog log n/logn)-bits space, which is more space efficient and still fast. Experiments show that our algorithms are efficient in both time and space when compared to previous algorithms.

p-EQUIVARIANT SPINC-STRUCTURES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that ${\sigma}\;:\;X\;{\rightarrow}\;X$ is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold $\Sigma$ as a fixed point set with ${\Sigma\cdot\Sigma}\;{\geq}\;0\;and\;[\Sigma]\;{\neq}\;0\;{\in}\;H_2(X;\mathbb{Z})$. We show that if _X(\Sigma)\;+\;{\Sigma\cdots\Sigma}\;{\neq}\;0$ then the $Spin^{C}$ bundle $\={P}$ is not $\mathbb{Z}_2-equivariant$, where det $\={P}\;=\;L$ is a basic class with $c_1(L)[\Sigma]\;=\;0$.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

ISOTROPY REPRESENTATIONS OF CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

  • Suh, Dong-Youp
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.175-178
    • /
    • 1988
  • Let .SIGMA. be a smooth compact manifold without boundary having the same homotopy type as a sphere, which is called a homotopy sphere. Supose a group G acts smoothly on .SIGMA. with the fixed point set .SIGMA.$^{G}$ consists of two isolated fixed points p and q. In this case, tangent spaces $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA. at isolated fixed points, as isotropy representations of G are called Smith equivalent. Moreover .SIGMA. is called a supporting homotopy sphere of Smith equivalent representations $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA.. The study on Smith equivalence has rich history, and for this we refer the reader to [P] or [Su]. The following question of pp.A.Smith [S] motivates the study on Smith equivalence.e.

  • PDF

The New Substituent Constants in the Excited States (II)

  • Sang-Chul Shim;Joon-Won Park;Heui-Suk Ham;Jin-Soon Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.45-47
    • /
    • 1983
  • In order to standardize the ${\sigma}^*,\;{\rho}^*$ is taken as unity for the benzoic acids by analogy with the fact that ${\rho}$ of benzoic acids in the ground state is taken as unity. The $pK_{\alpha}^*$ of many benzoic acid derivatives are determined by UV spectroscopy and fluorescence spectral analysis whenever possible. The ${\sigma}^*$ constants are derived from the Hammett equation utilizing these $pK_{\alpha}^*$ values and the $pK_{\alpha}^*$ of the benozic acid derivatives showed better correlationship with ${\sigma}^*$ than ${\sigma},\;{\sigma}^+\;and\;{\sigma}^-$ as expected. From these ${\sigma}^*$ values, ${\rho}^*$ of the phenol derivatives was calculated to be 1.28. The new standardized ${\sigma}^*$ values are calculated from the $pK_{\alpha}^*$ values of phenols since more accurate and abundant data are available for phenols than the benzoic acid derivatives.

Cultivating the Strategic CoP for Implementing Six Sigma (식스시그마 실행을 위한 전략적 실행공동체의 활성화)

  • Kim, Sung-Jin;Hong, Jong-Yi;Suh, Eui-Ho
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.129-140
    • /
    • 2011
  • There is no doubt Six Sigma is an excellent concept to improve quality of product or service. However, limitations to Six Sigma's implementation process have been discovered that are related to Six Sigma's foundation in statistical methods. The limitations of Six Sigma are overcome by the advantages of a strategic CoP (Community of Practice). Therefore, this research tries to build a strategic CoP for implementing Six Sigma. The method for building a strategic CoP is suggested, and then a case study of a real company is presented.