• Title/Summary/Keyword: ${\beta}1$-integrin

Search Result 112, Processing Time 0.042 seconds

Biodistribution of 99mTc Labeled Integrin Antagonist

  • Jang, Beom-Su;Park, Seung-Hee;Shin, In Soo;Maeng, Jin-Soo;Paik, Chang H.
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • The selective targeting of an integrin ${\alpha}_v{\beta}_3$ receptor using radioligands may enable the assessment of angiogenesis and integrin ${\alpha}_v{\beta}_3$ receptor status in tumors. The aim of this research was to label a peptidomimetic integrin ${\alpha}_v{\beta}_3$ antagonist (PIA) with $^{99m}Tc(CO)_3$ and to test its receptor targeting properties in nude mice bearing receptor-positive tumors. PIA was reacted with tris-succinimidyl aminotriacetate (TSAT) (20 mM) as a PIA per TSAT. The product, PIA-aminodiacetic acid (ADA), was radiolabeled with $[^{99m}Tc(CO)_3(H_2O)_3]^{+1}$, and purified sequentially on a Sep-Pak C-18 cartridge followed by a Sep-Pak QMA anion exchange cartridge. Using gradient C-18 reverse-phase HPLC, the radiochemical purity of $^{99m}Tc(CO)_3$-ADA-PIA (retention time, 10.5 min) was confirmed to be > 95%. Biodistribution analysis was performed in nude mice (n = 5 per time point) bearing receptor-positive M21 human melanoma xenografts. The mice were administered $^{99m}Tc(CO)_3$-ADA-PIA intravenously. The animals were euthanized at 0.33, 1, and 2 hr after injection for the biodistribution study. A separate group of mice were also co-injected with 200 ${\mu}g$ of PIA and euthanized at 1 hr to quantify tumor uptake. $^{99m}Tc(CO)_3$-ADA-PIA was stable in phosphate buffer for 21 hr, but at 3 and 6 hr, 7.9 and 11.5% of the radioactivity was lost as histidine, respectively. In tumor bearing mice, $^{99m}Tc(CO)_3$-ADA-PIA accumulated rapidly in a receptor-positive tumor with a peak uptake at 20 min, and rapid clearance from blood occurring primarily through the hepatobiliary system. At 20 min, the tumor-to-blood ratio was 1.8. At 1 hr, the tumor uptake was 0.47% injected dose (ID)/g, but decreased to 0.12% ID/g when co-injected with an excess amount of PIA, indicating that accumulation was receptor mediated. These results demonstrate successful $^{99m}TC$ labeling of a peptidomimetic integrin antagonist that accumulated in a tumor via receptor-specific binding. However, tumor uptake was very low because of low blood concentrations that likely resulted from rapid uptake of the agent into the hepatobiliary system. This study suggests that for $^{99m}Tc(CO)_3$-ADA-PIA to be useful as a tumor detection agent, it will be necessary to improve receptor binding affinity and increase the hydrophilicity of the product to minimize rapid hepatobiliary uptake.

THE ADHESION OF ODONTOBLAST TO TYPE I COLLAGEN (상아모세포의 I 형 아교질에 대한 부착)

  • Ahn, Myung-Ki;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.308-316
    • /
    • 2010
  • Odontoblasts are anchorage dependent cells adhering to a substrate via cell adhesive molecules. Receptor ligands such as integrins bind to these proteins and are known to function as signal transduction molecules in a series of critical recognition events of cell-substratum. The aim of this study is to examine the interaction of odontoblast (MDPC-23 cell) with type I Col and the effect of TGF-${\beta}1$ and TNF-$\alpha$ on the expression of cell adhesion molecules. In this study, MDPC-23 cells adhered to type I Col dose-dependently. Immunofluorescence data demonstrated that integrin ${\alpha}1$, ${\alpha}2$ and CD44 were expressed on cell surface, and FAK and paxillin were localized in focal adhesion plaques in MDPC-23 cells adhesion to Col. Cytokine TGF-${\beta}1$ increased the adhesion of MDPC-23 cells to Col and the expression level of integrin ${\alpha}1$, 4{\alpha}2$ and chondroitin sulfate on MDPC-23 cells. RT-PCR data demonstrated that cytokine TGF-${\beta}1$ increased the amount of integrin ${\alpha}1$ mRNA in MDPC-23 cells. Therefore, MDPC-23 cells adhere to collagen type I Col and expressed a complex pattern of integrins and proteoglycans, including ${\alpha}1$, ${\alpha}2$, chondroitin sulfate and CD44 detected by immunoblotting and immunofluorescence assay. TGF-${\beta}1$ treatment enhanced the expression of adhesion molecules such as integrin ${\alpha}1$, ${\alpha}2$ and chondroitin sulfate.

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Identification of Critical Residues for Plasminogen Binding by the αX I-domain of the β2 integrin, αXβ2

  • Gang, Jongyun;Choi, Jeongsuk;Lee, Joo Hee;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.240-246
    • /
    • 2007
  • The ${\beta}2$ integrins on leukocytes play important roles in cell adhesion, migration and phagocytosis. One of the ${\beta}2$ integrins, ${\alpha}X{\beta}2$ (CD11c/CD18), is known to bind ligands such as fibrinogen, Thy-1 and iC3b, but its function is not well characterized. To understand its biological roles, we attempted to identify novel ligands. The functional moiety of ${\alpha}X{\beta}2$, the ${\alpha}X$ I-domain, was found to bind plasminogen, the zymogen of plasmin, with moderate affinity ($1.92{\times}10^{-6}M$) in the presence of $Mg^{2+}$ or $Mn^{2+}$. The ${\beta}D-{\alpha}5$ loop of the ${\alpha}X$ I-domain proved to be responsible for binding, and lysine residues ($Lys^{242}$, $Lys^{243}$) in the loop were the most important for recognizing plasminogen. An excess amount of the lysine analog, 6-aminohexanoic acid, inhibited ${\alpha}X$ I-domain binding to plasminogen, indicating that binding is lysine-dependent. The results of this study indicate that leukocytes regulate plasminogen activation, and consequently plasmin activities, through an interaction with ${\alpha}X{\beta}2$ integrin.

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.

Role of Integrin, FAK (Focal Adhesion Kinase) and ERK (Extracellular Signal Regulated Kinase) on the Suppressed Cell Proliferation of Endometrial Cancer Cells by GnRH (Gonadotropin-Releasing Hormone) (GnRH (Gonadotropin-Releasing Hormone)에 의한 자궁내막암 유래 세포주의 세포 증식 억제 기전에 있어서 Integrin, FAK (Focal Adhesion Kinase) 및 ERK (Extracellular Signal Regulated Kinase)의 역할)

  • Choi, Jong Rak;Park, Dong Wook;Choi, Dong Soon;Min, Churl K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.115-123
    • /
    • 2006
  • Objective: To investigate new signal transduction cascade through integrin, FAK and ERK in the suppressed cell proliferation by GnRH-I and -II. Method: Human endometrial cancer cells (HEC1A) were cultured under the following condition: DMEM/F12 (10% FBS). GnRH-I and -II were treated time (0, 5, 10, 15, 20, 30 min; 100 nM) and dose (10 nM or 100 nM; 20 min) dependent manner according to experimental purposes. Cell proliferation was measured using [$^3H$] thymidine incorporation assay. Immunoblotting was utilized to detect proteins. Results: GnRH-I and -II inhibited proliferation of HEC1A cells and induced expression of integrin ${\beta}3$. Phosphorylation of FAK and ERK were induced by GnRH-I and -II. Conclusion: GnRH inhibited cell proliferation via the expression of integrin and FAK, ERK phosphorylation.

CD Gene Microarray Profiles of Bambusae Caulis in Liquamen in Human Mast Cell

  • Jeon Hoon;Kang Nan Joo;Kim Gyo Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.241-246
    • /
    • 2003
  • Bambusae Caulis in Liquamen(BCL) has been used to relieve the cough and asthma, and remove the phlegm in traditional Oriental medicine. In recent years, it was studied for its antiinflammatory, antiallergenic, immune-modulating, and anticarcinogenic capabilities. This experiment was performed to evaluate the microarray profiles of CD genes in human mast cells before and after BCL treatment. The results are as follows: The expression of 51 of the genes studied was up-regulated in the Bel-treated group; they include the genes coding L apoferritin, beta-2-microglobulin, ferritin light polypeptide, CD63, monocyte chemotactic and activating fact, heme oxygenase 1, CD140a, integrin alpha M, colony stimulating factor 2 receptor, eukaryotic translation elongation factor, CD37, interleukin 18, NADH dehydrogenase 1 beta, CD48, 5-lipoxygenase activating protein, interleukin 4, ribosomal protein L5, GABA(A) receptor-associated protein, beta-tubulin, integrin beta 1, CD162, CD32, lymphotoxin beta, alpha-tublin, integrin alpha L, CD2, CD151, CD331, 90 kDa heat shock protein, CD59, CD3Z, microsomal glutathione S-transferase 2, CD33, CD162R, cyclophilinA, CD84, interleukin 9 receptor, interleukin 11, CD117, CD39-Like 2, and so forth. The expression of 7 of the genes studied was down-regulated in the BCL-treated group; they include the genes coding con, CD238, SCF, CD160, CD231, CD24, and CD130. Consequently, the treatment of BCL on the human mast cells increased the expression of 51 genes and decreased the expression of 7 genes. These data would provide a fundamental basis to the traditional applications of Bambusae Caulis in Liquamen.

Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.355-362
    • /
    • 2017
  • The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.