THE ADHESION OF ODONTOBLAST TO TYPE I COLLAGEN

상아모세포의 I 형 아교질에 대한 부착

  • Ahn, Myung-Ki (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Jeong, Tae-Sung (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Shin (Department of Pediatric Dentistry, School of Dentistry, Pusan National University)
  • 안명기 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 정태성 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 김신 (부산대학교 치의학전문대학원 소아치과학교실)
  • Received : 2010.07.15
  • Accepted : 2010.08.12
  • Published : 2010.08.31

Abstract

Odontoblasts are anchorage dependent cells adhering to a substrate via cell adhesive molecules. Receptor ligands such as integrins bind to these proteins and are known to function as signal transduction molecules in a series of critical recognition events of cell-substratum. The aim of this study is to examine the interaction of odontoblast (MDPC-23 cell) with type I Col and the effect of TGF-${\beta}1$ and TNF-$\alpha$ on the expression of cell adhesion molecules. In this study, MDPC-23 cells adhered to type I Col dose-dependently. Immunofluorescence data demonstrated that integrin ${\alpha}1$, ${\alpha}2$ and CD44 were expressed on cell surface, and FAK and paxillin were localized in focal adhesion plaques in MDPC-23 cells adhesion to Col. Cytokine TGF-${\beta}1$ increased the adhesion of MDPC-23 cells to Col and the expression level of integrin ${\alpha}1$, 4{\alpha}2$ and chondroitin sulfate on MDPC-23 cells. RT-PCR data demonstrated that cytokine TGF-${\beta}1$ increased the amount of integrin ${\alpha}1$ mRNA in MDPC-23 cells. Therefore, MDPC-23 cells adhere to collagen type I Col and expressed a complex pattern of integrins and proteoglycans, including ${\alpha}1$, ${\alpha}2$, chondroitin sulfate and CD44 detected by immunoblotting and immunofluorescence assay. TGF-${\beta}1$ treatment enhanced the expression of adhesion molecules such as integrin ${\alpha}1$, ${\alpha}2$ and chondroitin sulfate.

상아모세포는 부착분자들을 이용하여 기질에 부착하는 세포이며, 인테그린과 같은 부착분자들이 일련의 세포와 세포외기질을 인지하는 신호전달분자로 알려져 있다. 본 연구의 목적은 상아모세포(MDPC-23 세포)와 I형 아교질과의 상호작용과 TGF-${\beta}1$과 TNF-${\alpha}$가 세포부착분자의 발현에 미치는 영향을 알아보기 위해 시행하였다. 본 연구에서 MDPC-23 세포는 농도의존적으로 I형 아교질에 부착했으며, 면역형광염색법에서 MDPC-23 세포가 아교질에 부착할 때, 국소부착점에서 인테그린 ${\alpha}1$, ${\alpha}2$, CD44, FAK 그리고 paxillin의 발현양상을 관찰할 수 있었다. 싸이토카인 TGF-${\beta}1$은 MDPC-23 세포의 아교질에 대한 부착성 및 인테그린 ${\alpha}1$, ${\alpha}2$와 chondroitin sulfate의 발현을 증가시켰으며, RT-PCR의 결과에서는 인테그린 ${\alpha}1$의 mRNA의 양이 TGF-${\beta}1$에 의해서 증가되었음을 확인하였다. 결론적으로 MDPC-23 세포는 아교질에 부착 친화성을 갖고 있으며, 부착 시에 인테그린 ${\alpha}1$, ${\alpha}2$와 CD44 그리고 chondroitin sulfate와 같은 부착분자들이 관여한다. 그리고 TGF-${\beta}1$은 인테그린 ${\alpha}1$, ${\alpha}2$ 그리고 chondroitin sulfate와 같은 부착분자의 발현을 증가시켰다.

Keywords

References

  1. Caton J, Tucker AS : Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat, 214:502-515, 2009. https://doi.org/10.1111/j.1469-7580.2008.01014.x
  2. Durand SH, Flacher V, Romeas A, et al. : Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol, 176:2880-2887, 2006.
  3. Timpl R : Macromolecular organization of basement membranes. Curr Opin Cell Biol, 8:618-624, 1996. https://doi.org/10.1016/S0955-0674(96)80102-5
  4. Hynes RO : Integrins: versatility, modulation and signaling in cell adhesion. Cell, 69:11-25, 1992. https://doi.org/10.1016/0092-8674(92)90115-S
  5. Lu ML, McCarron RJ, Jacobson BS : Initiation of HeLa cell adhesion to collagen is dependent upon collagen receptor upregulation, segregation to the basal plasma membrane, clustering and binding to the cytoskeleton. J Cell Sci, 101:873-883, 1992.
  6. Xue ZH, Zhao CQ, Chua GL, et al. : Integrin alphaMbeta2 clustering triggers phosphorylation and activation of protein kinase C delta that regulates transcription factor Foxp1 expression in monocytes. J Immunol, 184:3697-3709, 2010. https://doi.org/10.4049/jimmunol.0903316
  7. Schwock J, Dhani N, Hedley DW : Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets, 14:77-94, 2010. https://doi.org/10.1517/14728220903460340
  8. Ramos JW : The regulation of extracellular signalregulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol, 40:2707-2719, 2008. https://doi.org/10.1016/j.biocel.2008.04.009
  9. Boudreau NJ, Jones PL : Extracellular matrix and integrin signalling: the shape of things to come. Biochem J, 339 :481-488, 1999. https://doi.org/10.1042/0264-6021:3390481
  10. Darribere T, Skalski M, Cousin HL, et al. : Integrins: regulators of embryogenesis. Biol Cell, 92:5-25, 2000. https://doi.org/10.1016/S0248-4900(00)88760-2
  11. Hemler ME : VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol, 8:365-400, 1990. https://doi.org/10.1146/annurev.iy.08.040190.002053
  12. Heino J, Kapyla J : Cellular receptors of extracellular matrix molecules. Curr Pharm Des, 15:1309- 1317, 2009. https://doi.org/10.2174/138161209787846720
  13. Kapyla J, Ivaska J, Riikonen R, et al. : Integrin alpha(2)I domain recognizes type I and type IV collagens by different mechanisms. J Biol Chem, 275:3348-3354, 2000. https://doi.org/10.1074/jbc.275.5.3348
  14. Tulla M, Pentikainen OT, Viitasalo T, et al. : Selective binding of collagen subtypes by integrin alpha 1I, alpha 2I, and alpha 10I domains. J Biol Chem, 276:48206-48212, 2001.
  15. Cichy J, PureE : The liberation of CD44. J Cell Biol, 161:839-943, 2003. https://doi.org/10.1083/jcb.200302098
  16. Thesleff I, Jalkanen M, Vainio S, et al. : Cell surface proteoglycan expression correlates with epithelial- mesenchymal interaction during tooth morphogenesis. Dev Biol, 129:565-572 1988. https://doi.org/10.1016/0012-1606(88)90401-0
  17. Klass BR, Grobbelaar AO, Rolfe KJ : Transforming growth factor beta1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J, 85:9-14, 2009. https://doi.org/10.1136/pgmj.2008.069831
  18. Claudino M, Garlet TP, Cardoso CR, et al. : Downregulation of expression of osteoblast and osteocyte spontaneous alveolar bone loss of interleukin-10 knockout mice. Eur J Oral Sci, 118:19-28, 2010. https://doi.org/10.1111/j.1600-0722.2009.00706.x
  19. Thesleff I, Sharpe P : Signalling networks regulating dental development. Mech Dev, 67:111-123, 1997. https://doi.org/10.1016/S0925-4773(97)00115-9
  20. Heymann R, About I, Lendahl U, et al. : E- and Ncadherin distribution in developing and functional human teeth under normal and pathological conditions. Am J Pathol, 160:2123-2133 2002. https://doi.org/10.1016/S0002-9440(10)61161-3
  21. Heino J, Massague J : Transforming growth factorbeta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem, 264:21806-21811, 1989.
  22. Halberg DF, Proulx G, Doege K, et al. : A segment of the cartilage proteoglycan core protein has lectinlike activity. J Biol Chem, 263:9486-9490, 1998.
  23. Bauvois B, Rouillard D, Sanceau J, et al. : IFN-gamma and transforming growth factor-beta 1 differently regulate fibronectin and laminin receptors of human differentiating monocytic cells. J Immunol, 148:3912-3919, 1992.
  24. Santala P, Heino J : Regulation of integrin-type cell adhesion receptors by cytokines. J Biol Chem, 266:23505-23509, 1991.
  25. Tanaka Y, Adams DH, Hubscher S, et al. : T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature, 361:79-82, 1993. https://doi.org/10.1038/361079a0
  26. Hermanowski-Vosatka A, Van Strijp JA, Swiggard WJ, et al. : Integrin modulating factor-1: a lipid that alters the function of leukocyte integrins. Cell, 68:341-352, 1992. https://doi.org/10.1016/0092-8674(92)90475-R