DOI QR코드

DOI QR Code

Biodistribution of 99mTc Labeled Integrin Antagonist

  • Jang, Beom-Su (RI-Biomics Research & Development Team, Korea Atomic Energy Research Institute) ;
  • Park, Seung-Hee (Nuclear Medicine Department and Radiology Department, Warren G. Magnuson Clinical Center) ;
  • Shin, In Soo (Division of Biologics Research, Korea Food and Drug Administration) ;
  • Maeng, Jin-Soo (Bio-nanotechnology Research Center, Korea Food Research Institute) ;
  • Paik, Chang H. (Nuclear Medicine Department and Radiology Department, Warren G. Magnuson Clinical Center)
  • Received : 2012.10.17
  • Accepted : 2013.02.05
  • Published : 2013.03.31

Abstract

The selective targeting of an integrin ${\alpha}_v{\beta}_3$ receptor using radioligands may enable the assessment of angiogenesis and integrin ${\alpha}_v{\beta}_3$ receptor status in tumors. The aim of this research was to label a peptidomimetic integrin ${\alpha}_v{\beta}_3$ antagonist (PIA) with $^{99m}Tc(CO)_3$ and to test its receptor targeting properties in nude mice bearing receptor-positive tumors. PIA was reacted with tris-succinimidyl aminotriacetate (TSAT) (20 mM) as a PIA per TSAT. The product, PIA-aminodiacetic acid (ADA), was radiolabeled with $[^{99m}Tc(CO)_3(H_2O)_3]^{+1}$, and purified sequentially on a Sep-Pak C-18 cartridge followed by a Sep-Pak QMA anion exchange cartridge. Using gradient C-18 reverse-phase HPLC, the radiochemical purity of $^{99m}Tc(CO)_3$-ADA-PIA (retention time, 10.5 min) was confirmed to be > 95%. Biodistribution analysis was performed in nude mice (n = 5 per time point) bearing receptor-positive M21 human melanoma xenografts. The mice were administered $^{99m}Tc(CO)_3$-ADA-PIA intravenously. The animals were euthanized at 0.33, 1, and 2 hr after injection for the biodistribution study. A separate group of mice were also co-injected with 200 ${\mu}g$ of PIA and euthanized at 1 hr to quantify tumor uptake. $^{99m}Tc(CO)_3$-ADA-PIA was stable in phosphate buffer for 21 hr, but at 3 and 6 hr, 7.9 and 11.5% of the radioactivity was lost as histidine, respectively. In tumor bearing mice, $^{99m}Tc(CO)_3$-ADA-PIA accumulated rapidly in a receptor-positive tumor with a peak uptake at 20 min, and rapid clearance from blood occurring primarily through the hepatobiliary system. At 20 min, the tumor-to-blood ratio was 1.8. At 1 hr, the tumor uptake was 0.47% injected dose (ID)/g, but decreased to 0.12% ID/g when co-injected with an excess amount of PIA, indicating that accumulation was receptor mediated. These results demonstrate successful $^{99m}TC$ labeling of a peptidomimetic integrin antagonist that accumulated in a tumor via receptor-specific binding. However, tumor uptake was very low because of low blood concentrations that likely resulted from rapid uptake of the agent into the hepatobiliary system. This study suggests that for $^{99m}Tc(CO)_3$-ADA-PIA to be useful as a tumor detection agent, it will be necessary to improve receptor binding affinity and increase the hydrophilicity of the product to minimize rapid hepatobiliary uptake.

Keywords

References

  1. Pasqualini, R., Koivunen, E. and Ruoslahti, E. (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol., 15, 542-546. https://doi.org/10.1038/nbt0697-542
  2. Haubner, R., Wester, H.J., Reuning, U., Senekowitsch- Schmidtke, R., Diefenbach, B., Kessler, H., Stocklin, G. and Schwaiger, M. (1999) Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J. Nucl. Med., 40, 1061-1071.
  3. van Hagen, P.M., Breeman, W.A., Bernard, H.F., Schaar, M., Mooij, C.M., Srinivasan, A., Schmidt, M.A., Krenning, E.P. and de Jong, M. (2000) Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int. J. Cancer, 90, 186-198. https://doi.org/10.1002/1097-0215(20000820)90:4<186::AID-IJC2>3.0.CO;2-P
  4. Haubner, R., Bruchertseifer, F., Bock, M., Kessler, H., Schwaiger, M. and Wester, H.J. (2004) Synthesis and biological evaluation of a $^{99m}Tc$-labelled cyclic RGD peptide for imaging the alphavbeta3 expression. Nuklearmedizin, 43, 26-32.
  5. Harris, T.D., Kalogeropoulos, S., Nguyen, T., Liu, S., Bartis, J., Ellars, C., Edwards, S., Onthank, D., Silva, P., Yalamanchili, P., Robinson, S., Lazewatsky, J., Barrett, J. and Bozarth, J. (2003) Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother. Radiopharm., 18, 627-641. https://doi.org/10.1089/108497803322287727
  6. Chen, X., Park, R., Tohme, M., Shahinian, A.H., Bading, J.R. and Conti, P.S. (2004) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using $^{18}F$- and $^{64}Cu$-labeled RGD peptide. Bioconjugate Chem., 15, 41-49. https://doi.org/10.1021/bc0300403
  7. Onthank, D.C., Liu, S., Silva, P.J., Barrett, J.A., Harris, T.D., Robinson, S.P. and Edwards, D.S. (2004) $^{90}Y$ and $^{111}In$ complexes of a DOTA-conjugated integrin alpha v beta 3 receptor antagonist: different but biologically equivalent. Bioconjugate Chem., 15, 235-241. https://doi.org/10.1021/bc034108q
  8. Li, L., Wartchow, C.A., Danthi, S.N., Shen, Z., Dechene, N., Pease, J., Choi, H.S., Doede, T., Chu, P., Ning, S., Lee, D.Y., Bednarski, M.D. and Knox, S.J. (2004) A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated $^{90}Y$-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys., 58, 1215-1227. https://doi.org/10.1016/j.ijrobp.2003.10.057
  9. Haubner, R., Wester, H.J., Burkhart, F., Senekowitsch- Schmidtke, R., Weber, W., Goodman, S.L., Kessler, H. and Schwaiger, M. (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med., 42, 326-336.
  10. Chen, X., Park, R., Shahinian, A.H., Bading, J.R. and Conti, P.S. (2004) Pharmacokinetics and tumor retention of 125Ilabeled RGD peptide are improved by PEGylation. Nucl. Med. Biol., 31, 11-19. https://doi.org/10.1016/j.nucmedbio.2003.07.003
  11. Chen, X., Park, R., Hou, Y., Khankaldyyan, V., Gonzales- Gomez, I., Tohme, M., Bading, J.R., Laug, W.E. and Conti, P.S. (2004) MicroPET imaging of brain tumor angiogenesis with $^{18}F$-labeled PEGylated RGD peptide. Eur. J. Nucl. Med. Mol. Imaging, 31, 1081-1089.
  12. Chen, X., Hou, Y., Tohme, M., Park, R., Khankaldyyan, V., Gonzales-Gomez, I., Bading, J.R., Laug, W.E. and Conti, P.S. (2004) Pegylated Arg-Gly-Asp peptide: $^{64}Cu$ labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J. Nucl. Med., 45, 1776-1783.
  13. Hood, J.D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R.A., Xiang, R. and Cheresh, D.A. (2002) Tumor regression by targeted gene delivery to the neovasculature. Sci., 296, 2404-2407. https://doi.org/10.1126/science.1070200
  14. Burnett, C.A., Xie, J., Quijano, J., Shen, Z., Hunter, F., Bur, M., Li, K.C. and Danthi, S.N. (2005) Synthesis, in vitro, and in vivo characterization of an integrin alpha(v)beta(3)-targeted molecular probe for optical imaging of tumor. Bioorg. Med. Chem., 13, 3763-3771. https://doi.org/10.1016/j.bmc.2005.03.024
  15. Waibel, R., Alberto, R., Willuda, J., Finnern, R., Schibli, R., Stichelberger, A., Egli, A., Abram, U., Mach, J.P., Plückthun, A. and Schubiger, P.A. (1999) Stable one-step technetium- 99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat. Biotechnol., 17, 897-901. https://doi.org/10.1038/12890
  16. Schibli, R., Katti, K.V., Higginbotham, C., Volkert, W.A. and Alberto, R. (1999) In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic $fac-[^{99m}Tc(CO)_{3}]^{+}$-core. Nucl. Med. Biol., 26, 711-716. https://doi.org/10.1016/S0969-8051(99)00028-1
  17. Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. and Schubiger, P.A. (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of $^{99m}Tc(I)$-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem., 11, 345-351. https://doi.org/10.1021/bc990127h
  18. Pietzsch, H.J., Gupta, A., Reisgys, M., Drews, A., Seifert, S., Syhre, R., Spies, H., Alberto, R., Abram, U., Schubiger, P.A. and Johannsen, B. (2000) Chemical and biological characterization of technetium(I) and Rhenium(I) tricarbonyl complexes with dithioether ligands serving as linkers for coupling the $Tc(CO)_{3}$ and $Re(CO)_{3}$ moieties to biologically active molecules. Bioconjugate Chem., 11, 414-424. https://doi.org/10.1021/bc990162o
  19. Bullok, K.E., Dyszlewski, M., Prior, J.L., Pica, C.M., Sharma, V. and Piwnica-Worms, D. (2002) Characterization of novel histidine-tagged Tat-peptide complexes dual-labeled with (99m)Tc-tricarbonyl and fluorescein for scintigraphy and fluorescence microscopy. Bioconjugate Chem., 13, 1226-1237. https://doi.org/10.1021/bc025573a
  20. Smith, C.J., Sieckman, G.L., Owen, N.K., Hayes, D.L., Mazuru, D.G., Kannan, R., Volkert, W.A. and Hoffman, T.J. (2003) Radiochemical investigations of gastrin-releasing peptide receptor-specific [$^{99m}Tc(X)(CO)_{3}$-Dpr-Ser-Ser-Ser-Gln- Trp-Ala-Val-Gly-His-Leu-Met-($NH_{2}$)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = $H_{2}O$ or $P(CH_{2}OH)_{3}$. Cancer Res., 63, 4082-4088.
  21. Salignac, B., Grundler, P.V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A.E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kolle, U. and Hall, S. (2003) Reactivity of the organometallic $fac-[(CO)_{3}ReI(H_{2}O)_{3}]^{+}$ aquaion. Kinetic and thermodynamic properties of $H_{2}O$ substitution. Inorg. Chem., 42, 3516-3526. https://doi.org/10.1021/ic0341744
  22. Trump, D.P., Mathias, C.J., Yang, Z., Low, P.S., Marmion, M. and Green, M.A. (2002) Synthesis and evaluation of $^{99m}Tc(CO)_{3}$- DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl. Med. Biol., 29, 569-573. https://doi.org/10.1016/S0969-8051(02)00310-4
  23. Schibli, R. and Schubiger, P.A. (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging, 29, 1529-1542. https://doi.org/10.1007/s00259-002-0900-8