Browse > Article

Identification of Critical Residues for Plasminogen Binding by the αX I-domain of the β2 integrin, αXβ2  

Gang, Jongyun (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University)
Choi, Jeongsuk (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University)
Lee, Joo Hee (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University)
Nham, Sang-Uk (Divisions of Science Education and Biology, Research Institute of Life Sciences, Kangwon National University)
Abstract
The ${\beta}2$ integrins on leukocytes play important roles in cell adhesion, migration and phagocytosis. One of the ${\beta}2$ integrins, ${\alpha}X{\beta}2$ (CD11c/CD18), is known to bind ligands such as fibrinogen, Thy-1 and iC3b, but its function is not well characterized. To understand its biological roles, we attempted to identify novel ligands. The functional moiety of ${\alpha}X{\beta}2$, the ${\alpha}X$ I-domain, was found to bind plasminogen, the zymogen of plasmin, with moderate affinity ($1.92{\times}10^{-6}M$) in the presence of $Mg^{2+}$ or $Mn^{2+}$. The ${\beta}D-{\alpha}5$ loop of the ${\alpha}X$ I-domain proved to be responsible for binding, and lysine residues ($Lys^{242}$, $Lys^{243}$) in the loop were the most important for recognizing plasminogen. An excess amount of the lysine analog, 6-aminohexanoic acid, inhibited ${\alpha}X$ I-domain binding to plasminogen, indicating that binding is lysine-dependent. The results of this study indicate that leukocytes regulate plasminogen activation, and consequently plasmin activities, through an interaction with ${\alpha}X{\beta}2$ integrin.
Keywords
${\alpha}X{\beta}2$; ${\beta}2$ Integrin; Binding; I-Domain; Plasminogen/Plasmin;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arnaout, M. A., Mahalingam, B., and Xiong, J. P. (2005) Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381−410
2 Bilsland, C. A., Diamond, M. S., and Springer, T. A. (1994) The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous ${beta}$ subunit and localization of a ligand recognition site to the I-domain. J. Immunol. 152, 4582−4589
3 Choi, J., Leyton, L., and Nham, S-U. (2005) Characterization of ${\alpha}X$ I-domain binding to Thy-1. Biochem. Biophy. Res. Commun. 331, 557−561
4 Dutch, D. G. and Mertz, E. T. (1970) Plasminogen purification from human plasma by affinity chromatography. Science 170, 1095−1096   DOI
5 Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin ${\alpha}2{\beta}1$. Cell 101, 47−56
6 Nham, S-U. (1999) Characteristics of fibrinogen binding to the domain of CD11c, an ${alpha}$ subunit of p150,95. Biochem. Biophys. Res. Commun. 264, 630−634
7 Syrovets, T., Tippler, B., Rieks, M., and Simmet, T. (1997) Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphatedependent pathway. Blood 89, 4574−4583
8 Ugarova, T. P. and Yakubenko, V. P. (2001) Recognition of fibrinogen by leukocyte integrins. Ann. NY Acad. Sci. 936, 368−385
9 Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T. A. (2003) Structure and allosteric regulation of the ${\alpha}X{\beta}2$ integrin I-domain. Proc. Natl. Acad. Sci. USA 100, 1873−1878
10 Xiong, J.-P., Li, R., Essafi, M., Stehle, T., and Arnaout, M. A. (2000) An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J. Biol. Chem. 275, 38762−38767
11 Herren, T., Swaisgood, C. M., and Plow, E. F. (2003) Regulation of plasminogen receptors. Front Biosci. 8, 1−8   DOI
12 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., et al. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605−1612
13 Tarui, T., Miles, L. A., and Takada, Y. (2001) Specific interaction of angiostatin with integrin ${\alpha}{\gamma}{\beta}3$ in endothelial cells. J. Biol. Chem. 276, 39562−39568
14 Miles, L. A., Ginsberg, M. H., White, J. G., and Plow, E. F. (1986) Plasminogen interacts with human platelets through two distinct mechanisms. J. Clin. Invest. 77, 2001−2009
15 Parkkinen, J. and Rauvala, H. (1991) Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin: enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J. Biol. Chem. 266, 16730−16735
16 Humphries, M. J. (2000) Integrin structure. Biochem. Soc. Trans. 28, 311−339
17 McGuire, S. L. and Bajt, M. L. (1995) Distinct ligand binding sites in the I-domain of integrin ${\alpha}M{\beta}2$ that differentially affect a divalent cation-dependent conformation. J. Biol. Chem. 270, 25866−25871
18 Irigoyen, J. P., Munoz-Canoves, P., Koziczak, M., and Nagamine, Y. (1999) The plasminogen activator system: biology and regulation. Cell Mol. Life Sci. 56, 104−132
19 Valeryi, K. L., Novokhatny, V., Yakubenko, V. P., Skomorovska- Prokvolit, H. V., and Ugarova, T. P. (2004) Characterization of plasminogen as an adhesive ligand for integrins ${\alpha}M{\beta}2$ (Mac-1) and ${\alpha}5{\beta}1$ (VLA-5). Blood 104, 719−726
20 Zhang, L. and Plow, E. F. (1999) Amino acid sequences within the alpha subunit of integrin ${\alpha}M{\beta}2$ (Mac-1) critical for specific recognition of C3bi. Biochemistry 38, 8064−8071
21 Gonzales-Gronow, M., Gawdi, G., and Pizzo, S. V. (2002) Tissue factor is the receptor for plasminogen type 1 on 1-LN human prostate cancer cells. Blood 99, 4562−4567
22 Majumdar, M., Tarui, T., Shi, B., Akakura, N., Ruf, W., et al. (2004) Plasmin induced migration requires signaling through protease-activated receptor 1 and integrin ${\alpha}9{\beta}1$. J. Biol. Chem. 279, 37528−37534
23 Pluskota, E., Soloviev, D. A., Bdeir, K., Cines, D. B., and Plow, E. F. (2004) Integrin ${\alpha}M{\beta}2$ orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J. Biol. Chem. 279, 18063−18072
24 Yakubenko, V. P., Solovjov, D. A., Zhang, L., Yee, V. C., Plow, E. F., et al. (2001) Identification of the binding site for fibrinogen recognition peptide ${\gamma}$383−395 within the ${\alpha}M$ Idomain of integrin ${\alpha}M{\beta}2$. J. Biol. Chem. 275, 13995−14003
25 Lee, J. O., Rieu, P. M., Arnaout, A., and Liddington, R. C. (1995) Crystal structure of the A domain from the ${alpha}$ Subunit of Integrin CR3 (CD11b/CD18). Cell 80, 631−638
26 Choi, J. and Nham, S.-U. (2002) Loops within the CD11c Idomain critical for specific recognition of fibrinogen. Biochem. Biophys. Res. Comm. 292, 756−760
27 Shortman, K. and Liu, Y. J. (2002) Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151−161   DOI   ScienceOn
28 Plow, E. F., Herren, T., Redlitz, A., Miles, L. A., and Hoover- Plow, J. L. (1995) The cell biology of the plasminogen system. FASEB J. 9, 939−945
29 Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L., and Springer, T. A. (1993) The I-domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031−1043
30 Yakubenko, V. P., Lishko, V. K., Lam, S. C.-T., and Ugarova, T. P. (2002) A molecular basis for integrin ${\alpha}M{\beta}2$ ligand binding promiscuity. J. Biol. Chem. 277, 48635−48642
31 Gonzales-Gronow, M., Grenett, H. E., Weber, M. R., Gawdi, G., and Pizzo, S. V. (2001) Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase 9 by prostate cancer cells. Biochem. J. 355, 397−407
32 Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Weitz, J. I., et al. (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044−1048