• Title/Summary/Keyword: ${\beta}$-glucosidase 1

Search Result 348, Processing Time 0.025 seconds

Fecal Microflora of Mice in Relation to Diet (식이에 따른 장내세균의 효소활성 및 장내세균층의 비교)

  • 최성숙;하남주
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.128-132
    • /
    • 1999
  • The effects of diet on the composition of fecal microflora in mouse and the aclivilies of several enzymes in the leces were investigated. Vegetarian dietary groups were found to contain about ten lines higher numbers of Locmbocillus and B$&bacterizml than animal dietary groups. An~rnal dietmy groups were found to contain about 5 tolo times higher numbers of anaerobic Closhidia and Bocieriocles than the vegeterian detary groups. Fccal microbial $\beta$-glucosidase, $\beta$-glucm'onidase, ii-yptophanase and orease activilies in ihe animal dietary groups were shown lo be 30 to 50% hgher than those in h e vegetarian detary groups.

  • PDF

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya;Cho, Soo Hyun;Urgamal, Magsar;Park, Young W;Nam, Joong Hyeon;Bae, Hyung Churl;Song, Gyu Yong;Nam, Myoung Soo
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.735-742
    • /
    • 2017
  • This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Optimum Conditions of Cellulose-Hydrolysis Reaction with Mixed Enzymes of Cellulase and $\beta$-Glucosidase (셀룰라아제와 베타글루코시다아제의 혼합효소를 사용한 섬유소-가수분해반응의 최적조건)

  • 손민일;김태옥
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 1998
  • Optimum conditions of the cellulose-hydrolysis reaction with mixed enzymes(cellulase extracted from Penicellium funiculosum mixed with $\beta$-glucosidase extracted from Almod) were investigated to increase the production of glucose from cellulose. Experimental result showed that optimum conditions fro pH, activity ratio of $\beta$-glucosidase to cellulase, concentration of mixed enzymes, concentration of cellulose as a substrate, and temperature range were 4.2, 0.4, 0.8, U/mL, 40 g/L, and 37$\pm$3$^\circ C$, respectively. In these conditions, quantities of glucose productions by using mixed enzymes were larger than those by using cellulase at optimum conditions.

  • PDF

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae

  • Hong, Hao;Cui, Chang-Hao;Kim, Jin-Kwang;Jin, Feng-Xie;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.418-424
    • /
    • 2012
  • This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.

Bifidogenic Effects of Yaksun (functional herbal) Food Materials (약선식품소재의 유산균 증식 효과)

  • 배은아;한명주
    • Korean journal of food and cookery science
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • The objective of this study was to evaluate the effect of functional herbal foods on the growth of intestinal lactic acid bacteria. When Bifidobacterium breve and human intestinal microflora were inoculated in the general anaerobic medium which contained each functional food water extract, most of functional herbal foods induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effects of Liriipe platyphylla and Platycodon grandiflorum were excellent. The growth of lactic acid bacteria effectively inhibited the bacterial enzymes, $\beta$-glucosidase and $\beta$ -glucuronidase. Eugenia caryophyllata and Liriipe platyphylla potently inhibited the productivity of P -glucosidase of B. breve and human intestinal bacteria. Cinnamomum cassia, Gardenia jasminoides and Platycodon grandiflorum potently inhibited the productivity of $\beta$-glucuronidase of human intestinal bacteria. The growth component isolated from Platycodon grandiflorum was sucrose (compound B).

  • PDF

Production of Lignocellulytic Enzymes from Spent Mushroom Compost of Pleurotus eryngii (큰느타리버섯 수확 후 배지로부터 리그닌섬유소분해효소 생산)

  • Lim, Sun-Hwa;Kim, Jong-Kun;Lee, Yun-Hae;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.3
    • /
    • pp.152-158
    • /
    • 2012
  • The lignocellulytic enzymes including a-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) were extracted from spent mushroom compost (SMC) of Pleurotus eryngii. Different extraction buffers and conditions were tested for optimal recovery of the enzymes. The optimum extraction was shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. ${\alpha}$-Amylase was extracted with the productivity range from 1.20 to 1.6 Unit/SMC g. Cellulase was recovered with the productivity range from 2.10 to 2.80 U/gf. ${\beta}$-glucosidase and ${\beta}$-xylosidase productivities showed lowest recovery producing 0.1 U/g and 0.02 U/g, respectively. The P. eryngii SMCs collected from three different mushroom farms showed different recovery on laccase and xylanse, cellulase. Furthermore, the water extracted SMC was compared to commercial enzymes for its industrial application in decolorization and cellulase activity.

Alpha-glucosidase Inhibitors from the Branches Extract of Cotinus coggygria (안개나무 가지 추출물로부터 분리한 $\alpha$-glucosidase 저해활성물질)

  • Cha, Mi-Ran;Park, Jee-Hee;Choi, Yeon-Hee;Choi, Chun-Whan;Hong, Kyung-Sik;Choi, Sang-Un;Kim, Young-Sup;Kim, Young-Kyoon;Kim, Young-Ho;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.3
    • /
    • pp.229-232
    • /
    • 2009
  • The ethanol (EtOH) extract of the branches of Cotinus coggygria (Anacardiaceae) exhibited a significant inhibition on the yeast $\alpha$-glucosidase, one of the key enzymes related with diabetes mellitus, in a dose dependent manner, in vitro. The intensive phytochemical survey of the EtOH extract of the species by way of bioactivity-guided fractionation resulted in the isolation of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (1) as an active principle responsible for the inhibition on $\alpha$-glucosidase, together with two related components 2 and 3. Compound 1 demonstrated a strong inhibition on the yeast $\alpha$-glucosidase, in vitro and $IC_{50}$ value was calculated as 0.96 mg/ml, when that of a reference drug, acarbose was estimated as 5.3 mg/ml. On the other hand, other related constituents of the species, 1,2,3,6-tetra-O-galloyl-$\beta$-D-glucose (2) and gallic acid (3) were exhibited relatively poor inhibition upon the yeast $\alpha$-glucosidase, respectively.

Effect of Paeonia lactiflora Extracts on ${\alpha}-Glucosidase$

  • Lee, Sung-Jin;Ji, Seung-Tack
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.223-227
    • /
    • 2004
  • This study was carried out to investigate inhibitory effect of extracts from the root of Paeonia lactiflora on postprandial hyperglycemia. Organic solvent (hexane, ethyl acetate, butanol, aqueous) extracts from the crude drug were fractionated by high performance liquid chromatography. These fractions were examined to evaluate ${\alpha}-glucosidase$ (EC 3. 2. 1. 20) inhibition by microplate colorimetric assay. Among the fractions examined, the ethyl acetate fraction from the roots of Paeonia lactiflora showed potent inhibitory effects on ${\alpha}-glucosidase$. Therefore, further fractionation of the fraction was carried out to isolate the active principles. Finally, we isolated and Purified 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) as a active principle by activity-guided fractionation. These results suggest that the extract from the root of Paeonia lactiflora can be used as a new nutraceutial for inhibition on postprandial hyperglycemia and PGG might be a candidate for developing an ${\alpha}-glucosidase$ inhibitor.

Reducing Power and ${\alpha}-Glucosidase$ Inhibitory profiles of (-)-Catechin and Its glycoside ((-)-Catechin 및 배당체의 환원력 및 ${\alpha}-glucosidase$저해 활성)

  • Jung, Mee-Jung;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.358-362
    • /
    • 2007
  • From the EtOAc fraction of the MeOH extract of Ulmus davidiana, (-)-catechin (1), (-)-catechin-7-O-${\beta}$-D-apiofuranoside (2), and (-)-catechin-7-O-${\beta}$-D-xylopyranoside (3) were isolated and characterized on the basis of $^1H-and\;^{13}C-NMR$, and FABMS spectral data. Compounds 1-3 showed more strong reducing power activities than ${\alpha}-tocopherol$, a positive control.