Browse > Article
http://dx.doi.org/10.4489/KJM.2012.40.3.152

Production of Lignocellulytic Enzymes from Spent Mushroom Compost of Pleurotus eryngii  

Lim, Sun-Hwa (Graduate School of Bio. & Information Technology, Hankyong National University)
Kim, Jong-Kun (Graduate School of Bio. & Information Technology, Hankyong National University)
Lee, Yun-Hae (Mushroom Research Institute, GARES)
Kang, Hee-Wan (Graduate School of Bio. & Information Technology, Hankyong National University)
Publication Information
The Korean Journal of Mycology / v.40, no.3, 2012 , pp. 152-158 More about this Journal
Abstract
The lignocellulytic enzymes including a-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) were extracted from spent mushroom compost (SMC) of Pleurotus eryngii. Different extraction buffers and conditions were tested for optimal recovery of the enzymes. The optimum extraction was shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. ${\alpha}$-Amylase was extracted with the productivity range from 1.20 to 1.6 Unit/SMC g. Cellulase was recovered with the productivity range from 2.10 to 2.80 U/gf. ${\beta}$-glucosidase and ${\beta}$-xylosidase productivities showed lowest recovery producing 0.1 U/g and 0.02 U/g, respectively. The P. eryngii SMCs collected from three different mushroom farms showed different recovery on laccase and xylanse, cellulase. Furthermore, the water extracted SMC was compared to commercial enzymes for its industrial application in decolorization and cellulase activity.
Keywords
Pleurotus eryngii; Spent mushroom compost; Lignocellulytic enzymes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saranyu, K. and Rakrudee, S. 2007. Laccase from spent mushroom compost of Lentinus polychrous Lev. and its potential for Remazol Brilliant Blue R decolourisation. Biotechnology 6:408-413   DOI
2 Scarse, R. 1995. Cultivating mushrooms-the potential. Mycologist 9:18-19.   DOI   ScienceOn
3 Singh, A. D., Abdullah N. and Vikineswary, S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J. Chem. Technol. Biotechnol. 78:743-752.   DOI   ScienceOn
4 Vyas, B. R. M and Molitoris, H. P. 1995. Involvement of an extracellular $H_{2}O_{2}$-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of remazol brilliant blue R. Appl. Environ. Microbiol. 61:3919-3927.
5 Zervakis, G., Venturella, G. and Papadopoulou, K. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Mycrobiology 147:3183-3194.
6 Zhao, J., De Koker, T. H. and Janse, B. J. H. 1996. Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media. FEMS Microbiol. Lett. 145:393-399.   DOI
7 Couto, S. R. and Toca Herrera, J. L. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, vol. 24, no. 5, pp. 500-513.   DOI   ScienceOn
8 Devi, V. M., Inbathamizh, L., Ponnu, T. M., Premalatha, S and Divya, M. 2012. Dye Decolorization using fungal laccase. Bulletin of Environment, Pharmacology and Life Sciences 1:67-71
9 Hoshida, H., Fujita, T., Murata, K., Kubo, K. and Akada, R. 2005. Copper dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69:1090-1097.   DOI   ScienceOn
10 Gianluca, B., Chiara L., Giovanni, M., Patrizia, R., Carla, P., Luciano, V. and Francesco, G. 2008. Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl. Microbiol Biotechnol. 79:731-741.   DOI
11 Guo, M., Lu, F., Pu, J., Bai, D. and Du, L. 2005. Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl. Microbiol. Biotechnol. 69:178-183   DOI
12 Ko, H. K., Park, S. H., Kim, S. H., Park, H. G. and Park, W. M. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 50:103-106.   DOI
13 Jang, H. W. 2011. Mushroom. The Korean society of mushroom. 15:19-30
14 Matcham, S. E. and Wood, D. A. 1992. Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol. Lett. 14:297-300.   DOI
15 Na, J. N. and Kim, J. S. 2008. The optimum condition of SSF to ethanol production from starch biomass. Korean Chem. Eng. Res. 46:858-862
16 Ball, A. S. and Jacson, A. M. 1995. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Biores. Technol. 54:311-314.   DOI   ScienceOn
17 Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco- Paulo, A. and Gubitz, G. M. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 66:3357-3362.   DOI   ScienceOn
18 Angenent, L. T. 2007. Energy biotechnology: beyond the general lignocellulose-to-ethanol pathway. Current Opinion in Biotechnology 18:191-192.   DOI   ScienceOn
19 Ayala, M., Gonzalez-Munoz, S. S., Pinos-Rodriguez, J. M., Vazquez, C., Meneses, M., Loera, O. and Mendoza, G. D. 2011. Fibrolytic potential of spent compost of Agaricus bisporus to degrade forages for ruminants. African J. of Microbiol. Res. 5:643-650.
20 Claus, H., Faber, G. and Konig, H. 2002. Redox mediated decolorization of synthetic dyes by fungal laccases. Appl. Microb. Biotech. 59:672-678.   DOI   ScienceOn