Browse > Article
http://dx.doi.org/10.5142/jgr.2012.36.4.418

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae  

Hong, Hao (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
Cui, Chang-Hao (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
Kim, Jin-Kwang (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
Jin, Feng-Xie (College of Biotechnology, Dalian Polytechnic University)
Kim, Sun-Chang (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
Im, Wan-Taek (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Ginseng Research / v.36, no.4, 2012 , pp. 418-424 More about this Journal
Abstract
This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.
Keywords
Panax ginseng; Biotransformation; ${\beta}$-glucosidase; Ginsenoside F2; Flavobacterium johnsoniae;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Wu L, Jin Y, Yin C, Bai L. Co-transformation of Panax major ginsenosides Rb1 and Rg1 to minor ginsenosides C-K and F1 by Cladosporium cladosporioides. J Ind Microbiol Biotechnol 2012;39:521-527.   DOI   ScienceOn
2 Kim BN, Yeom SJ, Kim YS, Oh DK. Characterization of a $\beta$-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol Lett 2012;34:125-129.   DOI
3 Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type $Ca^{2+}$ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun 2008;365:399-405.   DOI   ScienceOn
4 Shin JY, Lee JM, Shin HS, Park SY, Yang JE, Cho SK, Yi TH. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats. J Ginseng Res 2012;36:86-92.   DOI   ScienceOn
5 Guan YY, Zhou JG, Zhang Z, Wang GL, Cai BX, Hong L, Qiu QY, He H. Ginsenoside-Rd from Panax notoginseng blocks $Ca^{2+}$ influx through receptor- and store-operated $Ca^{2+}$ channels in vascular smooth muscle cells. Eur J Pharmacol 2006;548:129-136.   DOI   ScienceOn
6 Lee JK, Choi SS, Lee HK, Han KJ, Han EJ, Suh HW. Effects of ginsenoside Rd and decursinol on the neurotoxic responses induced by kainic acid in mice. Planta Med 2003;69:230-234.   DOI   ScienceOn
7 Yang ZG, Sun HX, Ye YP. Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers 2006;3:187-197.   DOI   ScienceOn
8 Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 2007;17:1937-1943.
9 Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19.   DOI
10 Quan LH, Min JW, Yang DU, Kim YJ, Yang DC. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant $\beta$-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 2012;94:377-384.   DOI   ScienceOn
11 Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant $\beta$-glucosidase. Biotechnol Lett 2012;34:913-917.   DOI   ScienceOn
12 An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK et al. Identifi cation and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol 2010;76:5827-5836.   DOI   ScienceOn
13 Yan Q, Zhou W, Li X, Feng M, Zhou P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing beta-glucosidase from Paecilomyces Bainier sp. 229. Biosci Biotechnol Biochem 2008;72:352-359.   DOI   ScienceOn
14 Son JW, Kim HJ, Oh DK. Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 2008;30:713-716.   DOI
15 Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 2009;73:316-321.   DOI   ScienceOn
16 Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, Shi XL, Feng MQ. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces Bainier 229-7. Bioresour Technol 2010;101:7872-7876.   DOI   ScienceOn
17 Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-771.   DOI   ScienceOn
18 Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, Surh YJ. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat Res 2003;523-524:75-85.   DOI   ScienceOn
19 Kim MH, Lee YC, Choi SY, Cho CW, Rho J, Lee KW. The changes of ginsenoside patterns in red ginseng processed by organic acid impregnation pretreatment. J Ginseng Res 2011;35:497-503.   과학기술학회마을   DOI   ScienceOn
20 Ernst E. Panax ginseng: An overview of the clinical evidence. J Ginseng Res 2010;34:259-263.   과학기술학회마을   DOI   ScienceOn
21 Wang L, Liu QM, Sung BH, An DS, Lee HG, Kim SG, Kim SC, Lee ST, Im WT. Bioconversion of ginsenosides Rb1, Rb2, Rc and Rd by novel $\beta$-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J Biotechnol 2011;156:125-133.   DOI   ScienceOn
22 Wang DM, Yu HS, Song JG, Xu YF, Jin FX. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multiglycosides of protopanaxatriol type ginsenosides. Process Biochem 2012;47:133-138.   DOI   ScienceOn
23 Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-1071.   DOI   ScienceOn
24 Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-1160.   DOI
25 Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Arch Pharm Res 2004;27:429-435.   DOI   ScienceOn